Методы факторизации натуральных чисел. Ишмухаметов Ш.Т. - 191 стр.

UptoLike

Составители: 

Список литературы 192
Список литературы
[1] Agrawal M. PRIMES is in P / M.Agrawal, N.Kayal, N.Saxena.– Annals of
Mathematics.– 2004, v.160, p. 781–793.
[2] Atkin A. Prime sieves using binary quadratic forms/ A. Atkin,
D. Bernstein.– http://cr.yp.to/papers/primesieves–19990826.pdf
[3] Bach E. Factoring with cyclotomic polynomials / E. Bach, J. Shallit.– Math.
Comp. 1989. v.52(185), p. 201–219.
[4] Blake A.(ed). Advances in Elliptic Curve Cryptography. / A. Blake(ed).– Lon-
don Mathematical Society Lecture Note Series. 317, Cambridge Univ.Press,
2005, 281 p.
[5] Boender H. The number of relations in the Quadratic Sieve Algorithm /
H. Boender NM-R9622, The Netherlands, 1996, p. 1–22.
[6] Brent R.P. An improved Monte Carlo factorization algorithm/ R.P. Brent.–
BIT, 1980, v.20, p. 176—184.
[7] Brent R.P. Factorization of the eighth Fermat number / R.P. Brent,
J.M. Pollard.– Math. Comp, 1981, v.36, p. 627-— 630.
[8] Brent R.P. Some integer factorization algorithms using elliptic curves/
R.P. Brent.– Austral.Comput.Sci.Comm, 1986, v.8, p. 149–163.
[9] Brent R.P. Factorization of the tenth Fermat number / R.P.Brent.– Math.
Comp, 1999, v.68, p. 429–451.
[10] Brent R.P. Some parallel algorithms for integer factorisation / R.P. Brent.–
Lect.Notes in Comp.Sci, 1999, v.1685, p. 1–22.
[11] Brillihart J. Factorisations of b
n
±1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high
powers / J. Brillihart, D.H. Lehmer, S.Wafstaff.– Contemporary Mathemat-
ics, 22, Th.Edit., AMS, Providence, 2005, 327 p.
Список литературы                                                                192

Список литературы
 [1] Agrawal M. PRIMES is in P / M.Agrawal, N.Kayal, N.Saxena.– Annals of
    Mathematics.– 2004, v.160, p. 781–793.

 [2] Atkin A.      Prime sieves using binary quadratic forms/ A. Atkin,
    D. Bernstein.– http://cr.yp.to/papers/primesieves–19990826.pdf

 [3] Bach E. Factoring with cyclotomic polynomials / E. Bach, J. Shallit.– Math.
    Comp. 1989. v.52(185), p. 201–219.

 [4] Blake A.(ed). Advances in Elliptic Curve Cryptography. / A. Blake(ed).– Lon-
    don Mathematical Society Lecture Note Series. 317, Cambridge Univ.Press,
    2005, 281 p.

 [5] Boender H. The number of relations in the Quadratic Sieve Algorithm /
    H. Boender NM-R9622, The Netherlands, 1996, p. 1–22.

 [6] Brent R.P. An improved Monte Carlo factorization algorithm/ R.P. Brent.–
    BIT, 1980, v.20, p. 176—184.

 [7] Brent R.P.    Factorization of the eighth Fermat number / R.P. Brent,
    J.M. Pollard.– Math. Comp, 1981, v.36, p. 627-— 630.

 [8] Brent R.P.    Some integer factorization algorithms using elliptic curves/
    R.P. Brent.– Austral.Comput.Sci.Comm, 1986, v.8, p. 149–163.

 [9] Brent R.P. Factorization of the tenth Fermat number / R.P.Brent.– Math.
    Comp, 1999, v.68, p. 429–451.

[10] Brent R.P. Some parallel algorithms for integer factorisation / R.P. Brent.–
    Lect.Notes in Comp.Sci, 1999, v.1685, p. 1–22.

[11] Brillihart J. Factorisations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high
    powers / J. Brillihart, D.H. Lehmer, S.Wafstaff.– Contemporary Mathemat-
    ics, 22, Th.Edit., AMS, Providence, 2005, 327 p.