Неопределенные интегралы. Желтухин В.С. - 40 стр.

UptoLike

Составители: 

Рубрика: 

p 6= b/a
x =
µt + ν
t + 1
,
µ ν
x
2
+ px + q =
(µ
2
+ + q)t
2
(t + 1)
2
+
+
[2µν + p(µ + ν) + 2q]t + (ν
2
+ + q)
(t + 1)
2
,
ax
2
+ bx + c =
(
2
+ + c)t
2
(t + 1)
2
+
+
[2aµν + b(µ + ν) + 2c]t + (
2
+ + c)
(t + 1)
2
.
µ ν
t
2µν + p(µ + ν) + 2q = 0, 2aµν + b(µ + ν) + 2c = 0.
(µ + ν) = 2
aq c
ap b
, µν =
bq cp
ap b
.
µ ν
(ap b)z
2
+ 2(aq c)z + (bq cp) = 0.
J =
Z
P (t) dt
(t
2
+ λ)
m
p
αt
2
+ β
,
P (t) 2m 1 λ > 0 m > 1
P (t)/
¡
t
2
+ λ
¢
m
J
k
=
Z
(A
k
t + B
k
) dt
(t
2
+ λ)
k
p
αt
2
+ β
, (k = 1, 2, . . . , m).
       2a) Ïðè p 6= b/a ïðèìåíÿåòñÿ ïîäñòàíîâêà
                                        µt + ν
                                   x=          ,                            (25)
                                         t+1
ãäå êîýôôèöèåíòû µ è ν ïîäáèðàþòñÿ òàê, ÷òîáû óäîâëåòâîðèòü
óêàçàííîìó óñëîâèþ. Ïîäñòàâëÿÿ (25) â òðåõ÷ëåíû, âõîäÿùèå â ïî-
äèíòåãðàëüíîå âûðàæåíèå, ïîëó÷èì

        2            (µ2 + pµ + q)t2
       x + px + q =                  +
                         (t + 1)2
                        [2µν + p(µ + ν) + 2q]t + (ν 2 + pν + q)
                     +                                          ,
                                       (t + 1)2
                     (aµ2 + bµ + c)t2
      ax2 + bx + c =                  +
                          (t + 1)2
                        [2aµν + b(µ + ν) + 2c]t + (aν 2 + bν + c)
                     +                                            .
                                        (t + 1)2
    Çíà÷åíèÿ µ è ν îïðåäåëÿþòñÿ èç óñëîâèé ðàâåíñòâà íóëþ êî-
ýôôèöèåíòîâ ïðè ïåðâûõ ñòåïåíÿõ t:

            2µν + p(µ + ν) + 2q = 0,      2aµν + b(µ + ν) + 2c = 0.

èëè
                           aq − c         bq − cp
                     (µ + ν) = −2 , µν =          .
                           ap − b          ap − b
Ñîãëàñíî òåîðåìå Âèåòà, µ è ν åñòü êîðíè êâàäðàòíîãî óðàâíåíèÿ

                  (ap − b)z 2 + 2(aq − c)z + (bq − cp) = 0.                 (26)

Ìîæíî äîêàçàòü, ÷òî êîðíè óðàâíåíèÿ (26) âåùåñòâåííû è ðàçëè÷-
íû, è, òàêèì îáðàçîì, ïîäñòàíîâêà (25) îïðåäåëåíà.
     Â ðåçóëüòàòå ïîäñòàíîâêè èíòåãðàë (23) ïðåîáðàçóåòñÿ ê âèäó
                               Z
                                          P (t) dt
                          J=                  p      ,
                                   (t2 + λ)m αt2 + β
ãäå P (t)  ïîëèíîì ñòåïåíè 2m − 1 è λ > 0. Ïðè m > 1 ïðàâèëüíóþ
             ¡     ¢m
äðîáü P (t)/ t2 + λ ðàçëîæèì íà ýëåìåíòàðíûå, â ðåçóëüòàòå ÷åãî
ïðèäåì ê ñóììå èíòåãðàëîâ âèäà
                     Z
                            (Ak t + Bk ) dt
              Jk =                 p        ,      (k = 1, 2, . . . , m).   (27)
                         (t2 + λ)k αt2 + β
                                        40