Неопределенные интегралы. Желтухин В.С. - 43 стр.

UptoLike

Составители: 

Рубрика: 

( ) t =
p
q
tg z, t =
p
q
sh z;
( ) t =
p
q
sec z, t =
p
q
ch z;
( ) t =
p
q
sin z, t =
p
q
cos z, t =
p
q
th z.
J =
Z
dx
s
(5 + 2x + x
2
)
3
5 + 2x + x
2
= 4 + (x + 1)
2
t = x + 1
J =
Z
dt
s
(4 + t
2
)
3
,
t = 2 tg z
dt =
2 dz
cos
2
z
,
q
(4 + t
2
)
3
= 2
3
q
(1 + tg
2
z)
3
=
8
cos
3
z
.
J =
1
4
Z
cos z dz =
1
4
sin z + C =
1
4
tg z
p
1 + tg
2
z
+ C =
=
1
4
t/2
p
1 + t
2
/4
+ C =
x + 1
4
p
5 + 2x + x
2
+ C .
J =
Z
q
(x
2
1)
3
dx
x = ch t, dx = sh t dt.
     Èíòåãðàëû âèäà IIII ìîãóò áûòü ñâåäåíû ê èíòåãðàëàì îò âû-
ðàæåíèé, ðàöèîíàëüíûõ îòíîñèòåëüíî ñèíóñà èëè êîñèíóñà (òðèãî-
íîìåòðè÷åñêèõ èëè ãèïåðáîëè÷åñêèõ), ñ ïîìîùüþ ñëåäóþùèõ ïîä-
ñòàíîâîê, ñîîòâåòñòâåííî:
               p               p
       (I)   t=  tg z, èëè t = sh z;
               q               q
               p                p
      (II) t = sec z, èëè t = ch z;
               q                q
               p                p             p
      (III) t = sin z, èëè t = cos z, èëè t = th z.
               q                q             q
                              Z
                                     dx
Ï ð è ì å ð 47. Âû÷èñëèòü J = s             .
                                                   (5 + 2x + x2 )3

      . 5 + 2x + x2 = 4 + (x + 1)2 , ïîýòîìó ïðèìåíÿåì ïîäñòàíîâêó
t = x + 1. Òîãäà             Z
                                      dt
                        J=      s           ,
                                           (4 + t2 )3

 èíòåãðàë òèïà I. Ïîäñòàíîâêà t = 2 tg z äàåò
                       q                           q
             2 dz                                               3        8
       dt =        ,       (4 +   t2 )3   =2   3
                                                       (1 + tg2 z) =          .
            cos2 z                                                     cos3 z
      ðåçóëüòàòå ïîëó÷àåì
             Z
           1             1             1    tg z
     J =       cos z dz = sin z + C = p              +C =
           4             4             4 1 + tg2 z
           1    t/2                x+1
       =     p          +C = p                + C. /
           4 1 + t2 /4        4 5 + 2x + x2
                                Z q
Ï ð è ì å ð 48. Âû÷èñëèòü J =        (x2 − 1)3 dx.
     . Èíòåãðàë òèïà II; ïðèìåíÿåì ïîäñòàíîâêó

                       x = ch t,          dx = sh t dt.




                                          43