Неопределенные интегралы. Желтухин В.С. - 66 стр.

UptoLike

Составители: 

Рубрика: 

z = x+iy i i
2
= 1
f
f(x) f(ax)
sin x i sh x cos x ch x
ch
2
x sh
2
x = 1; th x cth x = 1;
1 th
2
x =
1
ch
2
x
; cth
2
x 1 =
1
sh
2
x
;
ch x + sh x = e
x
; ch x sh x = e
x
.
t = th
x
2
sh x =
2 th(x/2)
1 th
2
(x/2)
=
2t
1 t
2
, ch x =
1 + th
2
(x/2)
1 th
2
(x/2)
=
1 + t
2
1 t
2
,
dx =
2 dt
1 t
2
, x = 2 Arth t.
sh(x) = sh x; ch(x) = ch x; th(x) = th x.
sh(x ± y) = sh x ch y ±ch x sh y; ch(x ± y) = ch x ch y ±sh x sh y;
th(x ± y) =
th x ± th y
1 ± th x th y
; cth(x ± y) =
1 ± cth x cth y
cth x ± cth y
.
Çäåñü z = x+iy  êîìïëåêñíîå ÷èñëî, i  ìíèìàÿ åäèíèöà (i2 = −1).
     Ðàâåíñòâà, â êîòîðûõ ãèïåðáîëè÷åñêèå ôóíêöèè f âñòðå÷àþò-
ñÿ â ôîðìå f (x), èëè f (ax), ìîãóò áûòü ïîëó÷åíû èç àíàëîãè÷íûõ
ñîîòíîøåíèé äëÿ ñîîòâåòñòâóþùèõ òðèãîíîìåòðè÷åñêèõ ôóíêöèé,
åñëè ôîðìàëüíî çàìåíèòü sin x íà i sh x è cos x íà ch x.

Îñíîâíûå òîæäåñòâà



             ch2 x − sh2 x = 1;         th x cth x = 1;
                           1                           1
             1 − th2 x = 2 ;            cth2 x − 1 =        ;
                         ch x                        sh2 x
              ch x + sh x = ex ;        ch x − sh x = e−x .

Óíèâåðñàëüíàÿ ãèïåðáîëè÷åñêàÿ ïîäñòàíîâêà
                   x
     Åñëè t = th     , òî
                   2
           2 th(x/2)      2t                   1 + th2 (x/2)   1 + t2
  sh x =        2     =        ,        ch x =               =        ,
         1 − th (x/2) 1 − t2                   1 − th2 (x/2) 1 − t2
                         2 dt
                   dx =        ,    x = 2 Arth t.
                        1 − t2

Ôóíêöèè îòðèöàòåëüíîãî àðãóìåíòà



       sh(−x) = − sh x;     ch(−x) = ch x;      th(−x) = − th x.

Ôîðìóëû ñëîæåíèÿ



 sh(x ± y) = sh x ch y ± ch x sh y; ch(x ± y) = ch x ch y ± sh x sh y;
              th x ± th y                        1 ± cth x cth y
 th(x ± y) =               ;        cth(x ± y) =                 .
             1 ± th x th y                        cth x ± cth y




                                   66