Неопределенные интегралы. Желтухин В.С. - 67 стр.

UptoLike

Составители: 

Рубрика: 

sh
x
2
= ±
r
ch x 1
2
; ch
x
2
=
r
ch x + 1
2
;
th
x
2
=
sh x
ch x + 1
=
ch x 1
sh x
= ±
r
ch x 1
ch x + 1
;
cth
x
2
=
sh x
ch x 1
=
ch x + 1
sh x
= ±
r
ch x + 1
ch x 1
.
sh 2x = 2 sh x ch x =
2 th x
1 th
2
x
;
ch 2x = sh
2
x + ch
2
x = 2 ch
2
x 1 = 2 sh
2
x + 1;
sh 3x = 3 sh x + 4 sh
3
x; ch 3x = 3 ch x + 4 ch
3
x;
sh 4x = 4 sh
3
x ch x + 4 ch
3
x sh x; ch 4x = ch
4
x + 6 ch
2
x sh
2
x + sh
4
x;
th 2x =
2 th x
1 + th
2
x
; cth 2x =
1 + cth
2
x
2 cth x
.
sh x ± sh y = 2 sh
x ± y
2
ch
x y
2
;
ch x + ch y = 2 ch
x + y
2
ch
x y
2
; ch x ch y = 2 sh
x + y
2
sh
x y
2
;
th x ± th y =
sh(x ± y)
ch x ch y
; cth x ± cth y =
sh(y ± x)
sh x sh y
.
sh x sh y =
1
2
[ch(x + y) ch(x y)];
ch x ch y =
1
2
[ch(x y) + ch(x + y)] ;
Ôóíêöèè äëÿ ïîëîâèííîãî çíà÷åíèÿ àðãóìåíòà

                         r                                 r
                  x          ch x − 1                x         ch x + 1
             sh     =±                ;         ch     =                ;
                  2              2                   2             2
                                           r
               x     sh x     ch x − 1       ch x − 1
             th =           =          =±             ;
               2   ch x + 1     sh x       r ch x + 1
               x     sh x     ch x + 1       ch x + 1
            cth =           =          =±             .
               2   ch x − 1     sh x         ch x − 1
      Çíàê âûáèðàåòñÿ â ñîîòâåòñòâèè ñî çíàêîì ëåâîé ÷àñòè.

Ôóíêöèè êðàòíûõ àðãóìåíòîâ


                                   2 th x
           sh 2x = 2 sh x ch x =           ;
                                 1 − th2 x
           ch 2x = sh2 x + ch2 x = 2 ch2 x − 1 = 2 sh2 x + 1;

sh 3x = 3 sh x + 4 sh3 x;                  ch 3x = −3 ch x + 4 ch3 x;
sh 4x = 4 sh3 x ch x + 4 ch3 x sh x;       ch 4x = ch4 x + 6 ch2 x sh2 x + sh4 x;
          2 th x                                   1 + cth2 x
th 2x =           ;                       cth 2x =            .
        1 + th2 x                                    2 cth x

Ñóììà è ðàçíîñòü ôóíêöèé

                                               x±y x∓y
                      sh x ± sh y = 2 sh          ch   ;
                                                2    2
                   x+y x−y                            x+y x−y
ch x + ch y = 2 ch        ch   ;   ch x − ch y = 2 sh       sh   ;
                     2       2                          2      2
              sh(x ± y)                          sh(y ± x)
th x ± th y =            ;       cth x ± cth y =            .
               ch x ch y                          sh x sh y

Ïðîèçâåäåíèÿ ôóíêöèé


                                   1
                        sh x sh y =  [ch(x + y) − ch(x − y)];
                                   2
                                   1
                        ch x ch y = [ch(x − y) + ch(x + y)] ;
                                   2
                                          67