ВУЗ:
Составители:
Рубрика:
y = Arcth x = ln
r
x + 1
x − 1
=
1
2
ln
x + 1
x − 1
|x| > 1.
a = sh x a = ch x a = th x a = cth x
sh x ±
p
a
2
− 1 ±
a
p
1 − a
2
±
1
p
a
2
− 1
ch x
p
a
2
+ 1
1
p
1 − a
2
a
p
a
2
− 1
th x ±
a
p
a
2
+ 1
±
p
a
2
− 1
a
1
a
cth x ±
p
a
2
+ 1
a
±
a
p
a
2
− 1
1
a
sh x = a cth x =
p
a
2
+ 1
a
(x ≥ 0) Arsh a = Arcth
p
a
2
+ 1
a
Arsh x ± Arch y = Arsh
³
xy ±
p
(1 + x
2
)(y
2
− 1)
´
=
= Arch
h
y
p
1 + x
2
± x
p
y
2
− 1
i
;
Arsh x ± Arsh y = Arsh
³
x
p
1 + y
2
± y
p
1 + x
2
´
;
Arch x ± Arch y = Arsh
³
xy ±
p
(x
2
− 1)(y
2
− 1)
´
;
Arth x + Arth y = Arth
x ± y
1 ± xy
;
Arcth x ± Arcth y = Arcth
1 ± xy
x ± y
.
r x+1 1 x+1 y = Arcth x = ln = ln ïðè |x| > 1. x−1 2 x−1 Ñîîòíîøåíèÿ ìåæäó ãèïåðáîëè÷åñêèìè (èëè îáðàòíûìè ãèïåðáîëè- ÷åñêèìè) ôóíêöèÿìè a = sh x a = ch x a = th x a = cth x p a 1 sh x a ± a2 − 1 ±p ±p 1 − a2 a2 − 1 p 1 a ch x a2 + 1 a p p 1 − a2 a2 − 1 p a a2 − 1 1 th x ±p ± a a a a2 + 1 p a2 + 1 a 1 cth x ± ±p a a a a2 − 1 p p a2 + 1 a2 + 1 Åñëè sh x = a, òî cth x = (x ≥ 0), Arsh a = Arcth . a a Çíàê âûáèðàåòñÿ â ñîîòâåòñòâèè ñî çíàêîì ëåâîé ÷àñòè. Ñóììà è ðàçíîñòü îáðàòíûõ ãèïåðáîëè÷åñêèõ ôóíêöèé ³ p ´ Arsh x ± Arch y = Arsh xy ± (1 + x2 )(y 2 − 1) = h p p i 2 2 = Arch y 1 + x ± x y − 1 ; ³ p p ´ 2 Arsh x ± Arsh y = Arsh x 1 + y ± y 1 + x ;2 ³ p ´ 2 2 Arch x ± Arch y = Arsh xy ± (x − 1)(y − 1) ; x±y Arth x + Arth y = Arth ; 1 ± xy 1 ± xy Arcth x ± Arcth y = Arcth . x±y 69
Страницы
- « первая
- ‹ предыдущая
- …
- 67
- 68
- 69
- 70
- 71
- …
- следующая ›
- последняя »