ВУЗ:
Составители:
Рубрика:
y = Arcth x = ln
r
x + 1
x − 1
=
1
2
ln
x + 1
x − 1
|x| > 1.
a = sh x a = ch x a = th x a = cth x
sh x ±
p
a
2
− 1 ±
a
p
1 − a
2
±
1
p
a
2
− 1
ch x
p
a
2
+ 1
1
p
1 − a
2
a
p
a
2
− 1
th x ±
a
p
a
2
+ 1
±
p
a
2
− 1
a
1
a
cth x ±
p
a
2
+ 1
a
±
a
p
a
2
− 1
1
a
sh x = a cth x =
p
a
2
+ 1
a
(x ≥ 0) Arsh a = Arcth
p
a
2
+ 1
a
Arsh x ± Arch y = Arsh
³
xy ±
p
(1 + x
2
)(y
2
− 1)
´
=
= Arch
h
y
p
1 + x
2
± x
p
y
2
− 1
i
;
Arsh x ± Arsh y = Arsh
³
x
p
1 + y
2
± y
p
1 + x
2
´
;
Arch x ± Arch y = Arsh
³
xy ±
p
(x
2
− 1)(y
2
− 1)
´
;
Arth x + Arth y = Arth
x ± y
1 ± xy
;
Arcth x ± Arcth y = Arcth
1 ± xy
x ± y
.
r
x+1 1 x+1
y = Arcth x = ln = ln ïðè |x| > 1.
x−1 2 x−1
Ñîîòíîøåíèÿ ìåæäó ãèïåðáîëè÷åñêèìè (èëè îáðàòíûìè ãèïåðáîëè-
÷åñêèìè) ôóíêöèÿìè
a = sh x a = ch x a = th x a = cth x
p a 1
sh x a ± a2 − 1 ±p ±p
1 − a2 a2 − 1
p 1 a
ch x a2 + 1 a
p p
1 − a2 a2 − 1
p
a a2 − 1 1
th x ±p ± a
a a
a2 + 1
p
a2 + 1 a 1
cth x ± ±p a
a a
a2 − 1
p p
a2 + 1 a2 + 1
Åñëè sh x = a, òî cth x = (x ≥ 0), Arsh a = Arcth .
a a
Çíàê âûáèðàåòñÿ â ñîîòâåòñòâèè ñî çíàêîì ëåâîé ÷àñòè.
Ñóììà è ðàçíîñòü îáðàòíûõ ãèïåðáîëè÷åñêèõ ôóíêöèé
³ p ´
Arsh x ± Arch y = Arsh xy ± (1 + x2 )(y 2
− 1) =
h p p i
2 2
= Arch y 1 + x ± x y − 1 ;
³ p p ´
2
Arsh x ± Arsh y = Arsh x 1 + y ± y 1 + x ;2
³ p ´
2 2
Arch x ± Arch y = Arsh xy ± (x − 1)(y − 1) ;
x±y
Arth x + Arth y = Arth ;
1 ± xy
1 ± xy
Arcth x ± Arcth y = Arcth .
x±y
69
Страницы
- « первая
- ‹ предыдущая
- …
- 67
- 68
- 69
- 70
- 71
- …
- следующая ›
- последняя »
