Конспект лекций по статистической физике. Коренблит С.Э - 143 стр.

UptoLike

                                     |143|
{ íä䥪⨢­ë¥ 娬¨ç¥áª¨¥ ¯®â¥­æ¨ «ë ᯨ­®¢ëå ¯®¤á¨á⥬ ç áâ¨æ ®à¨-
¥­â¨à®¢ ­­ëå, ᮮ⢥âá⢥­­®, ¢¤®«ì ¯®«ï (+) ¨ ¯à®â¨¢ ¯®«ï ( ). ‘®-
®â¢¥âáâ¢ãî騥 ¯®«­ë¥ áâ âá㬬ë íâ¨å ¯®¤á¨á⥬ ¨ ¡®«ìè ï áâ â¨áâ¨-
ç¥áª ï á㬬 ¢á¥© á¨áâ¥¬ë ¤ îâáï ⮣¤ ¯à®¨§¢¥¤¥­¨ï¬¨ ¢¨¤ (8.19):
                                            2                  3
                          Y       X            X
                  Q() = Q()p         exp 4     ("p  ) np 5 ;             (14.11)
                        8
                          p      fnp g         p
                                                            9
            X           < X h                         i =
    QH =            exp :      "p + n+p + "p  np ;                          (14.12)
         fn+pY;np g         X
                             p
                                  n h                         io
                   ()
                    Q =            exp        Efn+p ;np g Nfn+p ;np g ;       (14.13)
              =         f p pg
                           n+ ;n

£¤¥ ¢ ¯à¥¤áâ ¢«¥­¨¨ ç¨á¥« § ¯®«­¥­¨ï ¢ ª ¦¤®¬ ¬ˆªà®á®áâ®ï­¨¨ fn+p ; np g
¯®«­®© á¨á⥬ë, ®¯à¥¤¥«¥­ë ᮡá⢥­­ë¥ §­ 祭¨ï ®¯¥à â®à ¯®«­®© í­¥à-
£¨¨ Hc ¨ ¯®«­®£® ç¨á« ç áâ¨æ Nc ¢¨¤ (8.7) ¨«¨ (6.16):
                          X              Xh                                i
     Hc 7 ! Efn+p ;np g = "p np  ("p ) n+p + ("p + ) np ; (14.14)
                         p;         p
                         X        X    
     Nc 7 ! Nfn+p ;np g = np  n+p + np :
                          p;        p

®«ì让 ¯®â¥­æ¨ « JH () = kT ln QH á¨áâ¥¬ë §¤¥áì ⥯¥àì ¥áâì á㬬
¤¢ãå á« £ ¥¬ëå, ª ¦¤®¥ ¨§ ª®â®àëå ®â­®á¨âáï ª ®¯à¥¤¥«¥­­®© ®à¨¥­â -
樨 ᯨ­ ,  = 1, ¨ ä®à¬ «ì­® ¬®¦¥â ¡ëâì § ¯¨á ­®, ª ª ¨ ¤«ï á«ãç ï
H = 0, ­® á ¯¥à¥®¯à¥¤¥«¥­­ë¬ 娬¨ç¥áª¨¬ ¯®â¥­æ¨ «®¬ (14.10):
                              1  (1=2) +           
          JH () =) JH () = 2 J0 ( ) + J0 ( ) ;
                      (1=2)                  (1=2)
                                                              (14.15)
£¤¥ ¬­®¦¨â¥«ì 1=2 ãç¨âë¢ ¥â, çâ® ¢ ®¯à¥¤¥«¥­¨¥ J0() ¢å®¤¨« ä ªâ®à
gs = 2, ª®â®àë© ®âáãâáâ¢ã¥â ⥯¥àì §¤¥áì ¨§{§ á­ïâ¨ï ¢ë஦¤¥­¨ï.
   ®ª ¦¥¬, ¯®á«¥¤®¢ ⥫쭮 ¨á¯®«ì§ãï ®¯à¥¤¥«¥­¨ï (14.7){(14.12), çâ®
á।­¨© ¬ £­¨â­ë© ¬®¬¥­â ¥¤¨­¨æë ®¡ê¥¬ , â.¥. ­ ¬ £­¨ç¥­­®áâì á¨-
á⥬ë M (14.3), ¬®¦­® ­ ©â¨ â ª¦¥ ¯® ä®à¬ã« ¬:
                0         1
             1 @ @JH () A         kT @ ln QH !
    M = V @H                     =
                                   V    @ H          ; â® ¥áâì: (14.16)
                           T;V;               T;V;
    dJH () = SdT PdV Nd V MdH: „¥©á⢨⥫쭮: (14.17)