Конспект лекций по статистической физике. Коренблит С.Э - 146 стр.

UptoLike

                                   |146|
£¤¥ Pl = mvl + (e=c)Al { ®¡®¡é¥­­ë¥ ¨¬¯ã«ìáë (l = x; y; z ). ’ ª ª ª H1
­¥ § ¢¨á¨â ®â y ¨ z , â® P_Y = 0, P_Z = 0, â.¥. PY = const, PZ = const,
¯à¨ç¥¬ PX  pX , PZ  pZ . ®¤áâ ¢¨¢ í⨠¨­â¥£à «ë ¢ (14.29), ­ ©¤¥¬:
           H1 = 2pm
                  X + m!0 (x x0 ) + pZ ; £¤¥: P = e Hx ;
                  2       2       2    2
                                                  Y              (14.30)
                             2        2m              c 0
           H ; 横«®âà®­­ ï ç áâ®â ; x = cPY = PY  L ;
    !0 = emc                                0
                                                eH m!         0
                                                               X

â.¥. 0  PY = const = m!0x0  m!0LX , £¤¥ LX , { X - ¢®¥ ॡ஠ï騪 .
    ‚뤥«ïï ¨§ H1 \¯®¯¥à¥ç­ë©" £ ¬¨«ìâ®­¨ ­, ¯®«ã稬 äã­ªæ¨î ƒ -
¬¨«ìâ®­ ®¤­®¬¥à­®£® ®á樫«ïâ®à
                                 p2
                                  Z
                    H1? = H1 2m = 2m +  p 2
                                          X   m! 2 (x x )2
                                                 0        0
                                                             :          (14.31)
                                                     2
’à ¥ªâ®à¨ï ç áâ¨æë á £ ¬¨«ìâ®­¨ ­®¬ (14.30) ¥áâì ¢¨­â®¢ ï «¨­¨ï: à ¢-
­®¬¥à­®¥ ¤¢¨¦¥­¨¥ ¢¤®«ì ®á¨ Z ¨ ¢à é ⥫쭮¥ ¢ ¯«®áª®á⨠XY á ç áâ®-
⮩ !0; ¢¥«¨ç¨­ ¨¬¯ã«ìá PY ®¯à¥¤¥«ï¥â à ááâ®ï­¨¥ x0 ®â ®á¨ ¢¨­â®¢®©
«¨­¨¨ ¤® ¯«®áª®á⨠ZY , { á⥭ª¨ x = 0 ï騪 ®¡ê¥¬®¬ V = LX LY LZ .
    Š¢ ­â®¢ ­¨¥ \¯®¯¥à¥ç­®£®" £ ¬¨«ìâ®­¨ ­ (14.31) ¯à¨¢®¤¨â ª ¤¨á-
ªà¥â­®¬ã ᯥªâàã \¯®¯¥à¥ç­®©" í­¥à£¨¨ á ¯®áâ®ï­­ë¬ è £®¬ "n?:
                 1!                                     eh H = 2 H; (14.32)
 "n? = n + 2 h !0 = (2n + 1)B H; "n? = h !0 = mc                B

£¤¥ eh =(mc) = 2B { ¬ £­¨â­ë© ¬®¬¥­â ®à¡¨â «ì­®£® ¤¢¨¦¥­¨ï § àï¤ .
‘¯¥ªâà ¯®«­®£® ®¤­®ç áâ¨ç­®£® £ ¬¨«ìâ®­¨ ­ (14.30), ª ª äã­ªæ¨ï á®-
åà ­ïîé¨åáï ª¢ ­â®¢ëå ç¨á¥« n ¨ pZ , ¤ ¥âáï ä®à¬ã«®© ‹ ­¤ ã:
                        p 2                            q
   " = "n (pZ ) = "n? + 2mZ ; ¨ ®¡à â­®, pZn(") =  2m(" "n?); (14.33)
{ á ãç¥â®¬ ®¡®¨å ­ ¯à ¢«¥­¨© ®á¨ Z . ‘¯¨­®¢®¥ à á饯«¥­¨¥  = 1
(14.5) ª ¦¤®£® ã஢­ï á ¤ ­­ë¬ pZ ­ ¤¢ ¨ á¢ï§ ­­ë© á ­¨¬ ¢ëè¥ ¯ -
à ¬ £­¥â¨§¬  㫨 §¤¥áì ­¥ ãç¨âë¢ ¥âáï. „«ï ï騪 ¬€ªà®áª®¯¨ç¥-
᪨å à §¬¥à®¢ ¤¢¨¦¥­¨¥ ¢¤®«ì ®á¨ Z áç¨â ¥âáï ª¢ §¨ª« áá¨ç¥áª¨¬, ¨ ¨§
(14.33), á ãç¥â®¬ (14.30) ¨ ®¡é¥£® ®¯à¥¤¥«¥­¨ï (7.4), ¤«ï ¯«®â­®á⨠ç¨á«
á®áâ®ï­¨© DH (") á í­¥à£¨ï¬¨ ¢ ¨­â¥à¢ «¥ ("; " + d") ¢ë⥪ ¥â ¢ëà ¦¥­¨¥:
             X                    L Y LZ X1 Z1                  m!Z0 LX
DH (") = ; n  (" "n(pZ )) = 2 h2            dpZ  (" "n(pZ )) dPY =
                                         n=0 1                    0
          y;P ;z;p
          Y   Z