Конспект лекций по статистической физике. Коренблит С.Э - 147 стр.

UptoLike

                                          |147|
                   1 Z1      0                       1
         = 2 V m!0 X
                     2 dpZ  @"            p2Z " A ; çâ®, ¯à¨ p = q2m;
                h2 n=0 0                   2m n?                           Z
              p          p Z1 d                          p
      dpZ = 2p ; 2m 2p  (" "n?  ) = 22mp"(" " "n?) ; ¤ ¥â:
                2 m d
                               0                                         n?
                 V    m  3=2h !  (") (" " ) A
                                 0 X p                         X (" "n?)
               2    (2   )                                     (")
                                              n?
     DH (") =          h3                         =   3=2
                                                          h
                                                           ! 0      p            ; (14.34)
                                  n=0 " "n?           2         n=0 " "n?
   £¤¥ (áà. á (14.49)): q m                  = djpZn (")j ;  (") = " 1 : (14.35)
                              2m (" "n?)           d"                  h !0 2
à¥¤¥« H ! 0, â.¥. !0 ! 0, á ãç¥â®¬ (14.32) ¢®á¯à®¨§¢®¤¨â, ¢ ᮣ« ᨨ á
(10.1), (13.8), ¥¥ ¢¨¤ ¤«ï ᢮¡®¤­ëå í«¥ªâà®­®¢: h !0  "n? =) d"?,
       X (" "n?)
       (")
 h !0 p" " !=0)
                              Z" d"?
                                 p         =  2
                                                p"; D (") =) D (") = (14.36)
                                                        H !0!0 3=2
       n=0          n? !0 0 " "?
            4 V (2 m) 3=2p"                     3                      2 m  !3=2
         =                             1
                              = A" ;  = ; A3=2 = 4V 2                          : (14.37)
                   h3                            2                       h
‚ëç¨á«ïï ¡®«ì让 ¯®â¥­æ¨ « (10.4), (10.5) ¤«ï ­ 襩 á¨áâ¥¬ë ¯ã⥬
¨­â¥£à¨à®¢ ­¨ï ¯® ç áâï¬, ­ «®£¨ç­ë¬ (10.6), (13.11), ­ ©¤¥¬, çâ® ¤«ï
                                   Z1
 JH() = kT ln QH = kT d" DH (") ln[1 + exp (( ")=kT )] ; (14.38)
                                   0
               Z1                  Z"                          Z     Z"
  JH () =          d" <>        d"0 DH ("0 )   =)
                                                       kT 
                                                                    d" d"0 DH ("0 ); (14.39)
                0                  0                           0      0
£¤¥ ¯à¨ ­¨§ª®© ⥬¯¥à âãॠ¨ ᨫ쭮¬ ¢ë஦¤¥­¨¨ kT   ' "F , ¨­â¥-
à¥áãïáì § ¢¨á¨¬®áâìî «¨èì ®â 娬¯®â¥­æ¨ « , ¬ë ¢®á¯®«ì§®¢ «¨áì
ä®à¬ã«®© (13.26), á®åà ­¨¢ ¢ ­¥© ¯®í⮬ã ⮫쪮 ¨­â¥£à «ì­ë© ç«¥­:
                                        Z    (")
                                              X
               JH ()  A3=2h !0 d"                 (" "n?)1=2 (" "n?) =
                                        0     n=0
                2        ()
                         X                        ()
                                                  X           1!
             = A3=2h !0 ( "n?)  h !0 f n + : (14.40)
                                     3=2
                3        n=0                      n=0         2
‘㬬¨à®¢ ­¨¥ §¤¥áì ®£à ­¨ç¥­® ãá«®¢¨¥¬ (14.35) 0  n   (). ®-
᪮«ìªã, ¤«ï á« ¡ëå ¯®«¥©, 2B H  , â.¥. h !0=  1, â® äã­ªæ¨ï
          1 !                                          2 A y3=2; (14.41)
   f n + 2  f (`)  F ( h !0`) ; £¤¥: F (y) =D) 3=2 3
                                                          3=2