Конспект лекций по статистической физике. Коренблит С.Э - 41 стр.

UptoLike

                                  |41|
‚¢®¤ï ¡á®«îâ­ãî ⥬¯¥à âãàã ¨ ⥯«®¥¬ª®áâì â¥à¬®áâ â à ¢¥­á⢠¬¨:
0              1                0 2           1                !
@ @S 2 (E  2 ) A        1    2  @ @ S2 (E 2 ) A     2    @   1
    @E2 V2= = T2 ; E1m @E22 V2= E1m @E2 T2 V2=                        (4.12)
     E   2      @T  !    E 2 1        E1m E1m ; â.ª.: C T ' E = E; (4.13)
=       1m        2
                      =
      T22 @E2 V2 T22 CV 2
                          1m     '     T2 E              V2 2      2

¨ ¯à¥­¥¡à¥£ ï ¢ (4.11) í⨬ ¯®á«¥¤­¨¬ á« £ ¥¬ë¬ (4.12) ) (4.13), ¢¢¨¤ã
áâ®«ì ®£à®¬­®© ⥯«®¥¬ª®á⨠â¥à¬®áâ â , § ⥬ ¯®« £ ï ¢ (4.10):
                               E; E )  ln D2(E; V2) = ln Z ;
        S2(E ) S (E )  ln 2((E;                                      (4.14)
                                                                 N
                                 E )           D(E; V )
¨ ¯®¤áâ ¢«ïï (4.11), (4.12), (4.14) ¢ ¢ëà ¦¥­¨¥ ¤«ï ln w1m (4.10), ¯®«ã稬:
          ln w1m(E1m) = S2(E E1m ) S (E() =) )ln ZN E1m ; (4.15)
          w1m(E1m) = Z1 e E1m  Z1 exp ET1m = %mm (E1m); (4.16)
          X            N           N X       2
             w1m(E1m) = 1; ZN ( ; V1) = exp ( E1m ) ;     (4.17)
           m                                  m
â.¥. 㦥 ¯à¥¤áª § ­­®¥ à ­¥¥ ¨§ á®®¡à ¦¥­¨© ¤¤¨â¨¢­®á⨠«®£ à¨ä¬
¬ âà¨æë ¯«®â­®á⨠¢ (1.26), (3.40), à á¯à¥¤¥«¥­¨¥ ¢¥à®ïâ­®á⥩, ª®â®-
஥ ­®á¨â ­ §¢ ­¨¥ ª ­®­¨ç¥áª®£® à á¯à¥¤¥«¥­¨ï ƒ¨¡¡á . ‚ á㬬㠯® m
(4.17) ª ¦¤ë© í­¥à£¥â¨ç¥áª¨© ã஢¥­ì ¢ª« ¤ë¢ ¥â, ª ª ¨ ¢ (3.5), (3.39),
á⮫쪮 à §, ª ª®¢ ¥£® ªà â­®áâì ¢ë஦¤¥­¨ï g(E1m ), ª®â®à ï, ¯® ᢮-
¥¬ã á¬ëá«ã ¢ (3.5), ᮢ¯ ¤ ¥â á® áâ â¨áâ¨ç¥áª¨¬ ¢¥á®¬ ¢á¥å ¤¨áªà¥â­ëå
¬ˆªà®á®áâ®ï­¨© á ¤ ­­®© í­¥à£¨¥© E1m , ¢®§¢à é ï ­ á ¯® áã⨠ª ¢ëà -
¦¥­¨ï¬ (4.6), (4.7), ª®â®àë¥ â¥¯¥àì ¯à¨­¨¬ îâ ¢¨¤:
                              g1(E1)dE1 = w1(E1) 1(E1; dE1 )= (4.18)
w1m (E1m) g(E1m) () dW1(E1) = W
= 1 e E1 1(E1; dE1 ) = 1 e E1 D1(E1; V1) dE1; £¤¥:            (4.19)
  ZN                    ZN
E1m () E1; w1m (E1m) () w1(E1); g(E1m ) () 1(E1; dE1 );       (4.20)
X              X                    1
                                    Z
  w1m(E1m ) = w1m(E1m )g(E1m) () dW1(E1) = 1; â.¥.:           (4.21)
 m              E 1m                     0
        1      !
               X                          Z1
ZN     = ; V1 = e
        T2
                          E1m g (E )
                                  1m   () e       E1 D (E ; V ) dE :
                                                      1 1 1       1    (4.22)
               E1m                        0