Задачи по квантовой механике. Часть 2. Корнев А.С. - 7 стр.

UptoLike

Составители: 

n n
δ x = a
V (x) = U(x) + δ(x a),
U(x)
x = a = const
Ψ(a + 0) = Ψ(a 0); Ψ
0
(a + 0) Ψ
0
(a 0) =
2m
}
2
ΩΨ(a),
m
m
0
a
x
V x( )
a
                                                                            :
                                                                              ] B €E K f> gU5 G \ 9> R 4 G 
           Z ? >[5769B G 5 DE G 4 EDG > 5 G f5 F G P E 9B > E 8M\ > R€G 4I 4 G k X 8?N C
     K > DE EDG >                            
                        p B F n K n F G 4 GYX 6_ >
                        
      HSR < E B c=T 4 G 6 EDG I4 <[P @8 E g c BQP n C HJG 4 G k X 8?N                   K > EDEDGIH G 5 G 5fF G P E BUP R€G 4 EDG n R <[k
                                            
    GYX R -< 2fF25 P 4 E M8 69] R DB :=>V\ 4I5[> E 8M69B X 8 K                       8 F E >[4 T€R€G N K > EDE=T \.B 7
                          VŒŒ"#v&Ž2ŒaŒ*2"!DŽ #
          "%`"/%# _'

    #)G M X6-. 2 ] + 2    δ N)1c %!#N%!8.3"%                      x=a
                                                                                                                                            A
                                                      V (x) = U (x) + Ωδ(x − a),
  +  U (x)  "%!8 ; EF 2 &("X 2 ! )/LE H) EF%a" O
 Q -E 3"% x = a ^ Ω = const 7 4 NNe5T. !#,6T 2 9 0 7 ? - 2
; X/-T +  ;7
   9  F24?>fF A
               Ψ(a + 0) = Ψ(a − 0);                             Ψ0 (a + 0) − Ψ0 (a − 0) =
                                                                                                                2m
                                                                                                                   ΩΨ(a),
                                                                                                                                     9 0 7=9 ?
                                                                                                                }2
+            m        ! ! T!#XE,7 ?
       ‘   # 'VŒ Œ  Ž #h2ŒŽ                                     Ž #,#$'        
        M  2 + -. 2 ; X6-. 2 2   2 - 2  ! 2 !#E  !8-* !8
         (
  !  Q3Ej6\ "%!8  ; EFQT; X6-.Q\] +  7M(] %
;  6T  )**S E N* ;-.)  .%! 2  ) *-.666 ;#E 15T + 
 ;"67
f+(*,+ #)G BG"! [5fg GYE >f: EDG H 698 XYG g GMi R Pl\ G 8 HJG 69] E=GMi
     G F2> EDc B€< 69] EDGYi Pl\w>&%^B R B E=T a m R B€5on p;n(' r?n
                                                                                                            V(x)
 ) < i F^Bd E > R&H BDB 5fF2< c B GYE < R€EDT Z 5 G 5 F G P E B i
 :=fF25fF24W8;u3^B9> QB \ 4 G 6 EDG 4 T >
  @8 E g c BDB_n
x(y{z|y{}~€yIM(*  2 E ) / - Qa
 .(!# 6(]  +  ^ - EFQ3+ -  )*6
 6- "%/7                                             0                     a            x
        a ;%!#EF ]  + N%  X/              ‚&ƒU„oD†o$#W
  -.E  ^  O3   %!# + ST&(E  7M(]%NA8T763.
          *                 ,+
               (*2*-,  - 1 5*8(' )  (, 1 0/.-0/21436558741434-:949 -:;"<>=?-A@ =CB-:; 9