Задачи по квантовой механике. Часть 2. Корнев А.С. - 79 стр.

UptoLike

Составители: 

n
H
n
(x) = (1)
n
e
x
2
d
n
dx
n
e
x
2
;
x
H
n
(x) = (2x)
n
n(n 1)
1
(2x)
n2
+
n(n 1)(n 2)(n 3)
1 · 2
(2x)
n4
. . .
H
2m
(x) = (1)
m
(2m)!
m!
1
F
1
µ
m,
1
2
, x
2
;
H
2m+1
(x) = (1)
m
(2m + 1)!
m!
2x
1
F
1
µ
m,
3
2
, x
2
.
H
n+1
(x) = 2xH
n
(x) 2nH
n1
(x); H
0
(x) = 1; H
1
(x) = 2x.
±1
(1 x
2
)y
00
2xy
0
+
·
l(l + 1)
m
2
1 x
2
¸
y = 0,
l = 0, 1, . . . ; m = 0, ±1, . . . , ±l.
m = 0
P
|m|
l
(x) =
1
2
l
l!
(1 x
2
)
|m|/2
d
l+|m|
dx
l+|m|
(x
2
1)
l
.
Y
lm
(θ, ϕ) =
s
2l + 1
4π
(l |m|)!
(l + |m|)!
P
|m|
l
(cos θ) e
i
,
                                                                     :m
+             U8 ; 2 "B7
           a / )#*!#. *!8"-."%3)-E 8 Q8>;#S!#66- QBA
           n
           0/? &(/-TU*+OA

                                           Hn (x) = (−1) e            n x2    dn −x2
                                                                                 e   ;
                                                                                                                   9 > 7Z ?
           ? 6)-*3P;NEF%c T
                                                5 '!# ; 2          dxn
                                                                               x
                                                                                   A
                                   n(n − 1)           n(n − 1)(n − 2)(n − 3)
    Hn (x) = (2x)n −                        (2x)n−2 +                        (2x)n−4 − . . .
           Z ?  )PEF/3 1c + ;+ % *!8"1c &("XUcTA
                                      1                        1·2

                                                    µ           ¶
                                          (2m)!   m        1 2
                          H2m (x) = (−1)        1 F1 −m, , x      ;
                                           m!              2
                                                              µ        ¶
                                            (2m   + 1)!             3
                          H2m+1 (x) = (−1)m             2x1 F1 −m, , x2 .
                                                m!                  2
           1? "%  2 &(*- A
            Hn+1 (x) = 2xHn (x) − 2nHn−1 (x);                             H0 (x) = 1;      H1 (x) = 2x.
                                                                                                                   9 >7 1%?
‹                    2/   2   w Ž        
           o\%"X 2  <   O(;+ PSL9<;!## E   ;-%  
<   ? ) EF  c! 2  + *- 2 EF 4"A8 ±1 76T  2 &,&(  XO
 6-.+ 3%  2
                                                                 ·¸
                                       2    00           0   m2
                              (1 − x )y − 2xy + l(l + 1) −          y = 0,
                                                           1 − x2

                        4!#6 2 ! 2 ;-%  <  O7
                                        l = 0, 1, . . . ;        m = 0, ±1, . . . , ±l.
M(
           M(#* )#*!#.L&(/- U*+\- 2 ] Q8H&("XQBA
             m=0

                                                               l+|m|
                               |m|           1       2 |m|/2 d
                             Pl (x)        = l (1 − x )               (x2 − 1)l .
                                                             <   6O\8  2 TL!8"%>! &(
                                            2 l!             dx l+|m|
     M(!## EF ;-%E 
!#"U8a&(%"XQ A

                                                                                                                   9YI 7=9 ?
                                                 s
                                                     2l + 1 (l − |m|)! |m|
                            Ylm (θ, ϕ) =                              Pl (cos θ) eimϕ ,
                                                       4π (l + |m|)!