Составители:
129
18 Гравитация и движение планет
18.1 Законы Кеплера
В начале XVII столетия
1
Иоганн Кеплер проанализировал
результаты наблюдения движения, планет, которые были выполнены
датским астрономом Тихо Браге
2
. Кеплер сделал вывод, что движение
планет вокруг Солнца определяется следующими тремя законами
движения планет, которые теперь называются законами Кеплера.
1. Орбита каждой планеты представляет собой эллипс, в одном из
фокусов которое находится Солнце.
2. Радиус-вектор, проведенный от Солнца к планете, описывает
(заметает) площадь, пропорциональную времени движения планеты
3
.
3. Квадрат периода обращения планеты вокруг Солнца пропорционален
кубу большей полуоси ее эллиптической орбиты
4
.
В своих Началах (Principia Mathematical 1687) Исаак Ньютон вывел
из законов Кеплера закон всемирного тяготения, согласно которому сила
притяжения между двумя телами обратно пропорциональна квадрату
расстояния между ними. Сейчас будет показано, как из закона тяготения,
открытого Ньютоном, выводятся первые два закона Кеплера
5
.
Предположим, что Солнце расположено в начале координат
плоскости движения планеты
6
. Запишем радиус-вектор планеты в виде:
r(t) = (x(t), y(t)) = xi + yj, (18.1)
где
i = (1,0) и j = (0,1) – единичные векторы осей х и у. Согласно закону
всемирного тяготения, сила притяжения между двумя телами обратно
пропорциональна квадрату расстояние между ними и потому вектор
ускорения планеты
r"(t) задается равенством:
3
,
kr
r
r
′′
=− (18.2)
где
22
rxy=+ – расстояние от Солнца до планеты. Если полярные
координаты планеты в момент времени t равны (r(t),
Θ
(t)), то единичный
полярный радиус (единичный вектор, направленный вдоль радиус-
1
Примерно в 1609 – 1619 годах.
2
Тихо Браге родился в Кнудструпе 14 декабря 1546 года, а умер 24 октября 1601 года в Праге.
Значительную часть своей жизни посвятил определению положения звезд и планет. Его наблюдения
были наиболее точными до изобретения телескопа. Кроме того, его работы способствовали развитию
тригонометрии.
3 Иными словами, секторная скорость каждой планеты относительно Солнца постоянна.
4 Иными словами,
отношение квадратов периодов обращения планет к кубам больших полуосей их
орбит постоянно и для всех планет одинаково.
5 Задача, в которой требуется найти орбиты двух тел, силы взаимодействия между которыми
определяются законом обратных квадратов, называется задачей Кеплера. Задачу Кеплера решил Исаак
Ньютон.
6 Данное движение является плоским. Это следует из того, что движение происходит под действием
центральной силы и теоремы об изменении момента количества движения: производная по времени от
момента количества движения материальной точки равна моменту равнодействующей сил, приложенных
к ней.
Страницы
- « первая
- ‹ предыдущая
- …
- 128
- 129
- 130
- 131
- 132
- …
- следующая ›
- последняя »
