Логика. Множества. Вероятность. Лексаченко В.А. - 53 стр.

UptoLike

Составители: 

V P
(Ω) vypolnts osnovnye sootnoxeni 21, 26 47 s
uqetom togo, qto znakam
,
, sootvetstvut znaki
, ,
M
v
P(Ω), a znaki , , , | (obyqno ne upotreblemye dl
mnoestv) opredelts ravenstvami 20, 22, 23, 25.
Sledstvie (Otnoxenie v P(Ω)).
1. A
B ravnosil~no lbomu
iz ravenstv:
A=
A
B, B =
A B,
A
B
=
, A\B
=
.
2
. Esli A
B , to (
A
C
)
(
B C
),
(A C)
(B C)
,
BA.
Dokazatel~stvo predlagaets qitatel kak upraneni.
Teorema 1.7 (Osnovnoe svo$istvo upordoqenno$i pary).
`
(c, d
)=(a, b)
(c
=
a)
(d
=
b
)
, gde
a, b, c, d
termy.
D o k a z a t e l ~ s t v o . sno, qto `(c = a
)(
d = b) (c, d) = (
a, b)
.
Imeem
[(c, d) = (a, b
)] [{c
}(a, b
)] [(c = a)
((c
= a)
(c
= b
))]
c
=
a
.
Potomu
[(
c, d
) = (
a, b
)]
{a, d
} =
{
a, b
}]
[d = b
]
i
[(c, d) = (
a, b
)]
[(c=
a)
(d=b)]. J
Sledstvie. `
(
x
1
, . . . , x
n
)=(y
1
, . . .
, y
n
)
V
n
i=1
(x
i
=y
i
)
.
Teorema 1.8 (Svo$istva dekartovyh proizvedeni$i). Pust~
A, B, C, D P
(Ω)
. Togda:
1) (
A
B)×
C
= (
A×C
)
(
B
×
C),
2)
A×
(B C) = (
A×B
) (A×C),
3) (A×
B
)
(
C×D
) = (A
C)
×(
B D
)
,
4) (
A
B)
×C
= (
A
×C)
(
B×C
)
,
5) A×
(
B C
) = (A
×B)
(A×
C)
,
6) (
A\B
)×C
= (A
×C
)\
(
B
×
C)
,
7) A×
(
B\C
) = (
A×B
)\(A
×C
)
,
8) esli A
=
ili
B = ,
to A×
B
=
,
9)
esli A
×
B
6
= , to
(A×
B
)
(C
×
D)
(A
C)(B
D),
10) esli
C
6= ,
to
(
AB
)
(
A
×
C)(B×
C
),
11) esli A 6=
,
to (B
C)
(A×B)(A×
C)
.
D o k a z a t e l ~ s t v o . 1.
[(
x, y
)
((
A B)
×
C
)][((
x
A
)
(xB))
(
y
C)][((
x, y)
A×
C)((
x, y)B×C)][(
x, y)
(A
×C)
(B×C)].
2. Analogiqno dokazatel~stvu punkta 1.
3.
[(
x, y)
(A
×
B)
(
C×D
)]
[(x A
)
(
y
B)
(
x
C
)
(y
D
)]
[(x, y
)
(
A C)
×
(B
D)].
4. Poloit~ D = B v 3). 5. Poloit~ C = A v 3).
6. [(x, y
)
(
A
×C)
\(
B
×C
)]
[(x
A
)(y
C
)
(
xB
)(
y C
)]
[(
x
A)
(
x
B
)(
y
C
)]
[(x, y
)(
A
\B)×C
].
7. Analogiqno dokazatel~stvu punkta 6.
8. Iz
A
=
(ili
B
=
) sleduet, qto
((x, y
)
A
×
B) = 0
i
potomu
A×B
=
.
53