Логика. Множества. Вероятность. Лексаченко В.А. - 54 стр.

UptoLike

Составители: 

9. Iz A
×B
6=
sleduet
A 6= , B
6
=
. Po teoremam
I.2.1.20), I
.3.1.13)
[(A
×B
)(
C
×D)] [(
x
)(
y)((((x
A
)
(
x
C))
(
y /
B))
(((
y B)
(
y
D
))(
x /
A
)))]
[((
x)((x
A) (x
C
))
(
y
)(y /
B
))
((
x)(
x /
A
)
(y
)((
y B
)
(y
D)))]
[(A
B
)
(B
D
)]
.
10. Poloit~
D = B
v 9). 11. Poloit~
C
=
A v 9). J
Opredelenie 1.5 (Proekcii mnoestv).
Pust~
CA
×
B. Mnoes-
tva pr
1
C
{x
A : (
y)((
x, y) C)}
, pr
2
C
{y
B : (x)((x, y
) C)}
nazyvats 1-$i i 2-$i proekcimi mnoestva C .
Teorema 1.9 (Svo$istva proekci$i).
Dl
C
A
×
B, D
A×
B, i = 1
,
2 :
1) C
(pr
1
C
)
×
(pr
2
C
)
,
2) pr
i
(
C
D) = (pr
i
C) (pr
i
D) ,
3) pr
i
(
C
D)(pr
i
C
)
(pr
i
D) , 4) esli C
D, to
(pr
i
C)
(pr
i
D)
,
5) pr
1
C =
S
(x,y
)
C
{
x
}, 6) pr
2
C =
S
(
x,y)
C
{
y
}
.
D o k a z a t e l ~ s t v o . Dokaem tol~ko sootnoxeni 1 4.
1. Iz
(x, y)
C
po pravilu
-vvedeni poluqim sootnoxe-
ni (
y
B)((x, y)
C
)
i (x
A)((
x, y
)
C)
, oznaqawie, qto
x
pr
1
C, y pr
2
C . Otsda sleduet, qto (x, y
)
(pr
1
C)
×(pr
2
C) i,
znaqit, C
(pr
1
C
)×(pr
2
C
).
2. Ispol~zu p. 2 teoremy I.3.1, poluqim [
x
pr
1
(
C
D)]
[(
y
B
)((x, y
)
C
D)]
[(
y
B)(((x, y
) C
)
((
x, y)
D))]
[(
y
B)((x, y
)
B) (
y
B
)((x, y)
D)][(
x
pr
1
C
) (
x
pr
1
D
)]
[
x
(pr
1
C
)
(pr
1
D)]
, otkuda sleduet
pr
1
(
C D
) = (pr
1
C)
(pr
1
D
)
.
Analogiqno dokazyvaets ravenstvo
pr
2
(
C D) = (pr
2
C
)
(pr
2
D
).
3. Ispol~zu p. 4 teoremy
I
.3.1, poluqim [
x
pr
1
(C D
)]
[(
y
B
)((
x, y)
C
D)] [(y
B)(((
x, y
)
C
)
((
x, y
) D))]
[(
y
B
)((x, y)
C
)
(
y
B
)((x, y)
D
)]
[(x
pr
1
C)
(x
pr
1
D
)]
[
x (pr
1
C)
(pr
1
D
)]
, otkuda
pr
1
(
C D
)
(pr
1
C)
(pr
1
D)
. Analo-
giqno dokazyvaets vklqenie pr
2
(
C
D)
(pr
2
C)
(pr
2
D
).
4. Poskol~ku
(
C
D) (
D = C
D)
, to po svo$istvu 2 iz C
D
sleduet
pr
i
D
= (pr
i
C
)
(pr
i
D)
, t. e.
(pr
i
C)
(pr
i
D)
, i
= 1, 2
.
J
2. Binarnye otnoxeni
Opredelenie 2.1 (Binarnye otnoxeni). Binarnym otnoxeni-
em medu mnoestvami A i B
nazyvaets tro$ika mno-
estv (
R, A, B
), gde RA
×
B
lboe podmnoestvo mnoes-
tva
A
×
B , nazyvaemoe grafikom otnoxeni (R, A, B)
. Binarnoe
otnoxenie
(
R, A, A) nazyvaets otnoxeniem v mnoestve A.
Oblast~ opredeleni
(R, A, B) nazyvaets
Dom R
pr
1
R, oblas-
t~ znaqeni$i Im R pr
2
R
. Pust~
X
A, R
|
X
R
(X×B
)
.
54