ВУЗ:
Составители:
Рубрика:
34
Hd
r
dl
γ
I
х
α
α
χ
r
R
VI. Магнитные поля.
1. x Решение:
∫∫
=
SL
Sdj
C
ldH
r
r
r
r
π
4
,
Т h. Остроградского – Гаусса: циркуляция напря -
женности магнитного поля по замкнутому конту-
ру = току, протекающему через поверхность , ог-
раниченную этим контуром:
I
C
xH
π
π
4
2 = ;
Cx
I
H
2
= .
Ответ:
Cx
I
H
2
= .
2. Дано: Решение:
R
I
,
dl
r
⊥
H
– ?
Проинтегрируем по длине окружности :
dl
rC
IR
rdl
rC
I
dH
33
sin == α
.
2
3
22
2
3
2
0
3
)(
22
XRC
IR
r
rC
IR
dl
rC
IR
H
r
+
===
∫
ππ
π
;
RC
I
H
x
π
2
0
=
=
,
22
cos
XR
X
r +==
α
.
Ответ:
2
3
22
2
)(
2
XRC
IR
H
+
=
π
.
I
34 VI. М а гнитн ы е поля. 1. x Реш ение: r r 4π r r ∫L Hdl = C j dS ,∫S I Т h. О стро градско го – Гаусса: циркуля ция нап ря - ж енно сти магнитно го п о ля п о замкнуто муко нту- ру= то ку, п ро текаю щ емучерезп о верхно сть, о г- раниченную э тим ко нтуро м: 4π 2I H 2π x = I; H = . C Cx 2I О твет: H = . Cx 2. Д а но: Реш ение: I, R I r dH γ r ⊥ dl H –? α х α χ R r dl I IR П ро интегрируем п о длине о круж но сти: dH = rdl sin α = dl . C r3 C r3 2πr IR 2 ∫0 C r 3 dl = C r 3 2π r = 2π IR IR H= 3 ; C(R 2 + X 2 2 ) 2π I X H x =0 = , r= = R2 + X 2 . CR cosα 2π IR 2 О твет: H= 3 . C(R 2 + X 2 2 )
Страницы
- « первая
- ‹ предыдущая
- …
- 32
- 33
- 34
- 35
- 36
- …
- следующая ›
- последняя »