ВУЗ:
Составители:
Рубрика:
9
30.
() ()
(
)
.3,5,2,6,1,1,3,2,2
−
−
− CBA
Задача 4
Вычислить площадь параллелограмма построенного на векторах a и b ,
q
p
,∠ - угол между векторами ., q
p
1.
.6,1,2,2,3
π
=∠
=
=
−=+= qpqpqpbqpa
2.
4,2,2,3,2
π
=∠
=
=
−=+= qpqpqpbqpa .
3.
.2,2,1,3,2
π
=∠
=
=
+=−= qpqpqpbqpa
4.
.65,1,2,2,53
π
=∠
=
=
+=−= qpqpqpbqpa
5.
.43,6,1,22,
π
=∠
=
=
+=−= qpqpqpbqpa
6.
.3,2,3,23,2
π
=∠
=
=
−=+= qpqpqpbqpa
7.
.2,3,2,,22
π
=∠
=
=
+=−= qpqpqpbqpa
8.
.4,1,7,4,
π
=∠
=
=
−=+= qpqpqpbqpa
9.
,6,1,2,3,44
π
=∠
=
=
+=−= qpqpqpbqpa
10.
.3,3,2,2,
π
=∠
=
=
−=+= qpqpqpbqpa
11.
.6,2,1,3,2
π
=∠
=
=
−=+= qpqpqpbqpa
12.
4,,1,4,2,3
π
=∠
=
=
−=+= ppqpqpbqpa .
13.
.2,1,5/1,2,3
π
=∠
=
=
+=−= qpqpqpbqpa
14.
.65,2/1,4,5,23
π
=∠
=
=
+=−= qpqpqpbqpa
15.
.43,3,2,2,2
π
=∠
=
=
+=−= qpqpqpbqpa
16.
.3,3,2,2,3
π
=∠
=
=
−=+= qpqPqpbqpa
17.
.2,2,3,3,2
π
=∠
=
=
+=−= qpqpqpbqpa
18.
.4,2,7,,4
π
=∠
=
=
−=+= qpqPqpbqpa
19.
.6,2,1,3,4
π
=∠
=
=
+=−= qpqpqpbqpa
20.
.3,2,7,2,4
π
=∠
=
=
−=+= qpqpqpbqpa
21.
.2,1,10,,23
π
=∠
=
=
−=+= qpqpqpbqpa
22.
4,,4,5,2,4
π
=∠
=
=
+=−= qpqpqpbqpa .
23.
.3,7,6,2,32
π
=∠
=
=
−=+= qpqpqpbqpa
24.
.3,4,3,2,3
π
=∠
=
=
+=−= qpqpqpbqpa
25.
.4,3,2,2,32
π
=∠
=
=
−=+=− qpqpqpbqpa
26.
.6,1,4,3,32
π
=∠
=
=
+=−= qpqpqpbqpa
27.
.3,2,1,3,5
π
=∠
=
=
−=+= qpqpqpbqpa
28.
.2,2,2/1,3,27
π
=∠
=
=
+=−= qpqpqpbqpa
29.
.4,4,3,,6
π
=∠
=
=
+=−= qpqpqpbqpa
30.
.6,1,4,23,10
π
=∠
=
=
−=+= qpqpqpbqpa
30. A(2, − 2, 3), B(1,1, 6), C (− 2, − 5, 3). Задача 4 Вычислить площадь параллелограмма построенного на векторах a и b , ∠ p, q - угол между векторами p, q . 1. a = p + 3q , b = 2 p − q, p = 2, q = 1, ∠pq = π 6. 2. a = 2 p + q , b = p − 3q , p = 2, q = 2, ∠pq = π 4 . 3. a = p − 2q , b = p + 3q , p = 1, q = 2, ∠pq = π 2. 4. a = 3 p − 5q , b = p + 2q , p = 2, q = 1, ∠pq = 5π 6. 5. a = p − q , b = 2 p + 2q , p = 1, q = 6, ∠pq = 3π 4 . 6. a = p + 2q , b = 3 p − 2q , p = 3, q = 2, ∠pq = π 3. 7. a = 2 p − 2q , b = p + q, p = 2, q = 3, ∠pq = π 2. 8. a = p + q , b = p − 4q , p = 7, q = 1, ∠pq = π 4. 9. a = 4 p − 4q , b = p + 3q , p = 2, q = 1, ∠pq = π 6 , 10. a = p + q , b = 2 p − q, p = 2, q = 3, ∠pq = π 3 . 11. a = p + 2q , b = 3p − q, p = 1, q = 2, ∠pq = π 6. 12. a = 3 p + q , b = p − 2q , p = 4, q = 1, ∠p, p = π 4 . 13. a = p − 3q , b = p + 2q , p = 1 / 5, q = 1, ∠pq = π 2. 14. a = 3 p − 2q , b = p + 5q , p = 4, q = 1 / 2, ∠pq = 5π 6. 15. a = p − 2q , b = 2 p + q, p = 2, q = 3, ∠pq = 3π 4 . 16. a = p + 3q , b = p − 2q , P = 2, q = 3, ∠pq = π 3. 17. a = 2 p − q , b = p + 3q , p = 3, q = 2, ∠pq = π 2. 18. a = 4 p + q , b = p − q, P = 7, q = 2, ∠pq = π 4. 19. a = p − 4q , b = 3 p + q, p = 1, q = 2, ∠pq = π 6 . 20. a = p + 4q , b = 2 p − q, p = 7, q = 2, ∠pq = π 3 . 21. a = 3 p + 2q , b = p − q, p = 10, q = 1, ∠pq = π 2 . 22. a = 4 p − q , b = p + 2q , p = 5, q = 4, ∠p, q = π 4 . 23. a = 2 p + 3q , b = p − 2q , p = 6, q = 7, ∠pq = π 3. 24. a = 3 p − q , b = p + 2q , p = 3, q = 4, ∠pq = π 3. 25. a − = 2 p + 3q , b = p − 2q , p = 2, q = 3, ∠pq = π 4 . 26. a = 2 p − 3q , b = 3p + q, p = 4, q = 1, ∠pq = π 6. 27. a = 5 p + q , b = p − 3q , p = 1, q = 2, ∠pq = π 3. 28. a = 7 p − 2q , b = p + 3q , p = 1 / 2, q = 2, ∠pq = π 2. 29. a = 6 p − q , b = p + q, p = 3, q = 4, ∠pq = π 4. 30. a = 10 p + q , b = 3 p − 2q , p = 4, q = 1, ∠pq = π 6 . 9
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »