Аналитическая геометрия. Локтионова Г.Н - 9 стр.

UptoLike

Рубрика: 

9
30.
() ()
(
)
.3,5,2,6,1,1,3,2,2
CBA
Задача 4
Вычислить площадь параллелограмма построенного на векторах a и b ,
q
p
, - угол между векторами ., q
p
1.
.6,1,2,2,3
π
=
=
=
=+= qpqpqpbqpa
2.
4,2,2,3,2
π
=
=
=
=+= qpqpqpbqpa .
3.
.2,2,1,3,2
π
=
=
=
+== qpqpqpbqpa
4.
.65,1,2,2,53
π
=
=
=
+== qpqpqpbqpa
5.
.43,6,1,22,
π
=
=
=
+== qpqpqpbqpa
6.
.3,2,3,23,2
π
=
=
=
=+= qpqpqpbqpa
7.
.2,3,2,,22
π
=
=
=
+== qpqpqpbqpa
8.
.4,1,7,4,
π
=
=
=
=+= qpqpqpbqpa
9.
,6,1,2,3,44
π
=
=
=
+== qpqpqpbqpa
10.
.3,3,2,2,
π
=
=
=
=+= qpqpqpbqpa
11.
.6,2,1,3,2
π
=
=
=
=+= qpqpqpbqpa
12.
4,,1,4,2,3
π
=
=
=
=+= ppqpqpbqpa .
13.
.2,1,5/1,2,3
π
=
=
=
+== qpqpqpbqpa
14.
.65,2/1,4,5,23
π
=
=
=
+== qpqpqpbqpa
15.
.43,3,2,2,2
π
=
=
=
+== qpqpqpbqpa
16.
.3,3,2,2,3
π
=
=
=
=+= qpqPqpbqpa
17.
.2,2,3,3,2
π
=
=
=
+== qpqpqpbqpa
18.
.4,2,7,,4
π
=
=
=
=+= qpqPqpbqpa
19.
.6,2,1,3,4
π
=
=
=
+== qpqpqpbqpa
20.
.3,2,7,2,4
π
=
=
=
=+= qpqpqpbqpa
21.
.2,1,10,,23
π
=
=
=
=+= qpqpqpbqpa
22.
4,,4,5,2,4
π
=
=
=
+== qpqpqpbqpa .
23.
.3,7,6,2,32
π
=
=
=
=+= qpqpqpbqpa
24.
.3,4,3,2,3
π
=
=
=
+== qpqpqpbqpa
25.
.4,3,2,2,32
π
=
=
=
=+= qpqpqpbqpa
26.
.6,1,4,3,32
π
=
=
=
+== qpqpqpbqpa
27.
.3,2,1,3,5
π
=
=
=
=+= qpqpqpbqpa
28.
.2,2,2/1,3,27
π
=
=
=
+== qpqpqpbqpa
29.
.4,4,3,,6
π
=
=
=
+== qpqpqpbqpa
30.
.6,1,4,23,10
π
=
=
=
=+= qpqpqpbqpa
  30. A(2, − 2, 3),      B(1,1, 6),         C (− 2, − 5, 3).

                                     Задача 4
      Вычислить площадь параллелограмма построенного на векторах a и b ,
∠ p, q - угол между векторами p, q .
  1. a = p + 3q ,       b = 2 p − q,       p = 2, q = 1,    ∠pq = π 6.
  2. a = 2 p + q ,       b   = p − 3q ,     p   = 2,           q   = 2,       ∠pq = π 4 .
  3. a = p − 2q ,        b   = p + 3q ,     p   = 1,           q   = 2,       ∠pq = π 2.
  4. a = 3 p − 5q ,      b   = p + 2q ,     p   = 2,           q   = 1,       ∠pq = 5π 6.
  5. a = p − q ,         b   = 2 p + 2q ,   p   = 1,           q   = 6,       ∠pq = 3π 4 .
  6. a = p + 2q ,        b   = 3 p − 2q ,   p   = 3,           q   = 2,       ∠pq = π 3.
  7. a = 2 p − 2q ,      b   = p + q,       p   = 2,           q   = 3,       ∠pq = π 2.
  8. a = p + q ,         b   = p − 4q ,     p   = 7,           q   = 1,       ∠pq = π 4.
  9. a = 4 p − 4q ,      b   = p + 3q ,     p   = 2,           q   = 1,       ∠pq = π 6 ,
  10. a = p + q ,        b   = 2 p − q,     p   = 2,           q   = 3,       ∠pq = π 3 .
  11. a = p + 2q ,       b   = 3p − q,      p   = 1,           q   = 2,       ∠pq = π 6.
  12. a = 3 p + q ,      b   = p − 2q ,     p   = 4,           q   = 1,       ∠p, p = π 4 .
  13. a = p − 3q ,       b   = p + 2q ,     p   = 1 / 5,       q   = 1,       ∠pq = π 2.
  14. a = 3 p − 2q ,     b   = p + 5q ,     p   = 4,           q   = 1 / 2,   ∠pq = 5π 6.
  15. a = p − 2q ,       b   = 2 p + q,     p   = 2,           q   = 3,       ∠pq = 3π 4 .
  16. a = p + 3q ,       b   = p − 2q ,     P   = 2,           q   = 3,       ∠pq = π 3.
  17. a = 2 p − q ,      b   = p + 3q ,     p   = 3,           q   = 2,       ∠pq = π 2.
  18. a = 4 p + q ,      b   = p − q,       P   = 7,           q   = 2,       ∠pq = π 4.
  19. a = p − 4q ,       b   = 3 p + q,     p   = 1,           q   = 2,       ∠pq = π 6 .
  20. a = p + 4q ,       b   = 2 p − q,     p   = 7,           q   = 2,       ∠pq = π 3 .
  21. a = 3 p + 2q ,     b   = p − q,       p   = 10,          q   = 1,       ∠pq = π 2 .
  22. a = 4 p − q ,      b   = p + 2q ,     p   = 5,           q   = 4,       ∠p, q = π 4 .
  23. a = 2 p + 3q ,     b   = p − 2q ,     p   = 6,           q   = 7,       ∠pq = π 3.
  24. a = 3 p − q ,      b   = p + 2q ,     p   = 3,           q   = 4,       ∠pq = π 3.
  25. a − = 2 p + 3q ,   b   = p − 2q ,     p   = 2,           q   = 3,       ∠pq = π 4 .
  26. a = 2 p − 3q ,     b   = 3p + q,      p   = 4,           q   = 1,       ∠pq = π 6.
  27. a = 5 p + q ,      b   = p − 3q ,     p   = 1,           q   = 2,       ∠pq = π 3.
  28. a = 7 p − 2q ,     b   = p + 3q ,     p   = 1 / 2,       q   = 2,       ∠pq = π 2.
  29. a = 6 p − q ,      b   = p + q,       p   = 3,           q   = 4,       ∠pq = π 4.
  30. a = 10 p + q ,     b   = 3 p − 2q ,   p   = 4,           q   = 1,       ∠pq = π 6 .

                                                                                              9