Линейные задачи оптимизации. Ч.2. Оптимальное управление линейными динамическими объектами. Лутманов С.В. - 168 стр.

UptoLike

Составители: 

Рубрика: 

ПРИЛОЖЕНИЕ
168
4.60949
Пример 2.9
Область начальных положений фазового вектора
a = 5; b = 4; k = 1;
Plot
A9
b
a
è
a^2 x^2, 2+ k Hx + 3L=, 8x, a, a<,
AxesLabel
8"x
1
", "x
2
"<E
-4 -2 2 4
x
1
2
4
6
8
10
x
2
Graphics
Уравнения, описывающие границы области начальных положений фазо-
вого вектора
ϕ1@x1 , x2D = x2
4
5
è
25 x1^2 ;
ϕ2@x1 , x2D = x1 x2 + 5;
Определение точек пересечения прямой и эллипса
Gran = NSolve@8ϕ1@x1, x2D 0, ϕ2@x1, x2 D 0<, 8x1, x2<D
88x1 →−5., x2 0.<, 8x1 →−1.09756, x2 3.90244<<
Решение совместной системы дифференциальных уравнений для опти-
мальных управлений
                                  ПРИЛОЖЕНИЕ

4.60949



                                  Пример 2.9
     Область начальных положений фазового вектора

        b è
a = 5; b = 4; k = 1;
Plot A9 ∗ a ^ 2 − x ^ 2 , 2 + k ∗ Hx + 3 L=, 8x, − a, a <,

 AxesLabel → 8"x 1", "x 2 "