Приложение определенных интегралов к решению задач геометрии и физики. Ляпунова М.Г. - 33 стр.

UptoLike

Составители: 

Рубрика: 

Амурский Государственный Университет 33
2.12
32
)3(49
xy =
,
30
x
.
=
=
).2sinsin2(
),2coscos2(
ttay
ttax
3
cos
3
ϕ
ρ
a=
.
2.13
22
2
= xy
,
22
x
.
=
+=
),cos(sin
),sin(cos
tttay
tttax
π
20
t
2
θρ
=
,
πθ
0
.
2.14
4
3
4
3
2
5
2
xxxxy =
,
0
=
y
.
=
=
,sin2
,sin2
2
2
tgtay
tax
0
0
tt
.
θρ
sin
a=
.
2.15
xy
cosln1
=
,
6
0
π
x
.
=
=
,sin
,cos
5
5
ty
tx
2
0
π
t
.
3
cos
3
θ
ρ
a=
,
2
0
π
θ
.
2.16
chxy =
,
10
x
.
+=
=
,2
,
3
1
2
3
ty
ttx
30
t
.
ϕ
ρ
1
=
,
2
2
1
ϕ
.
2.17
yx
cosln
=
,
3
0
π
y
.
=
+=
,cos8sin6
,cos6sin8
tty
ttx
2
0
π
t
.
)sin1(4
ϕρ
=
,
6
0
π
ϕ
.
2.18
yyx
ln
2
1
4
1
2
=
,21
y
.
=
=
),cos1(9
),sin(9
ty
ttx
π
20
t
.
)sin1(6
ϕρ
+=
,
0
2
ϕ
π
.
2.19
3
2
3
2
3
2
ayx =+
.
=
=
,
,3
3
2
tty
tx
11
t
.
ϕ
ρ
3
4
2
e
=
,
22
π
ϕ
π
.
2.20
1
2
2
=
x
y
,
0
=y
.
=
=
,
4
2
,
6
4
6
t
y
t
x
.0
,0
=
=
y
x
ϕρ
2
=
,
12
5
0
ϕ
.
2.21
)cos2ln(
xy
=
,
33
ππ
x
.
=
=
),3(
3
,
2
2
t
t
y
tx
0
=y
.
ϕρ
sin
=
,
6
0
π
ϕ
.
2.22
()
1ln1
2
1
22
+=
xxxxy
,
11
+
ax
.
=
+=
),sin(cos
),sin(cos
ttey
ttex
t
t
46
ππ
t
ϕ
ρ
4
3
3
e
=
,
3
0
π
ϕ
.
2.23
()
2
1
xx
ee
y
=
,
30
x
.
=
=
),2sinsin2(4
),2coscos2(4
tty
ttx
π
t
0
.
),sin1(3
ϕρ
+=
0
6
ϕ
π
.
2.24
4arccos
2
+=
xxxy
,
2
1
0
x
.
=
=
,sin6
,cos6
3
3
ty
tx
π
2
3
0
t
.
),cos1(5
ϕρ
=
0
3
ϕ
π
.
2.25
x
ey =
2,
8ln3ln
x
.
=
=
),cos1(3
),sin(3
ty
ttx
π
t
0
.
ϕ
ρ
12
5
5
e
=
,
3
0
π
ϕ
.
Амурский Государственный Университет                                                                33

                                        x =a (2 cos t −cos 2t ),                             ϕ
2.12   9 y 2 =4(3 −x) 3 , 0 ≤x ≤3 .                                         ρ =a cos 3         .
                                         y =a(2 sin t −sin 2t ).                             3
                                        x =a (cos t +t sin t ),
2.13   2 y =x 2 −2 , − 2 ≤x ≤ 2 .                               0 ≤t ≤2π    ρ =θ 2 , 0 ≤θ ≤π .
                                        y =a (sin t −t cos t ),
          2       2                      x =2a sin 2 t ,
2.14   y = x 4 x − x 4 x 3 , y =0 .              2
                                                               0 ≤t ≤t 0 .   ρ =a sin θ .
          5       3                     y =2a sin tgt ,
                                                                                              θ
                                                                             ρ =a cos 3         ,
                             π          x =cos 5 t ,               π                         3
2.15   y =1−ln cos x , 0 ≤x ≤ .                5
                                                              0 ≤t ≤ .
                             6           y =sin t ,                2              π
                                                                             0 ≤θ ≤ .
                                                                                   2
                                         1 3                                   1 1
                                        x = t −t ,
2.16   y =chx , 0 ≤x ≤1 .                3                    0 ≤t ≤3 .     ρ = , ≤ϕ ≤2 .
                                             2                                 ϕ 2
                                         y =t +2,
                                                                             ρ =4(1 −sin ϕ ) ,
                           π            x =8 sin t +6 cos t ,       π
2.17   x =ln cos y , 0 ≤y ≤ .                                 0 ≤t ≤ .             π
                           3            y =6 sin t −8 cos t ,       2       0 ≤ϕ ≤ .
                                                                                    6
                                                                             ρ =6(1 +sin ϕ ) ,
          1     1                        x =9(t −sin t ),
2.18   x = y 2 − ln y , 1 ≤y ≤2 .                            0 ≤t ≤2π .      π
          4     2                       y =9(1 −cos t ),                    − ≤ϕ ≤0 .
                                                                              2
                                                                                      4
                                                                                        ϕ
        2     2        2                x = 3t 2 ,                          ρ =2e ,  3

2.19   x +y =a .
        3     3        3                                      −1 ≤t ≤1 .
                                                3
                                        y =t −t ,                            π    π
                                                                             − ≤ϕ ≤ .
                                                                              2    2
                                         x =t 6 ,           x =0,
          x2                                    6                                          5
2.20   y = −1 , y =0 .                           4                          ρ =2ϕ , 0 ≤ϕ ≤ .
          2                             y =2 − t     ,      y =0.                         12
                                                   4
                                         x =t 2 ,
                         π    π                                                              π
2.21   y =ln(2 cos x) , − ≤x ≤ .        y = t (t 2 −3),     y =0 .          ρ =sin ϕ , 0 ≤ϕ ≤ .
                         3    3                                                              6
                                           3

2.22
        1
        2
                           (
     y = x x2 −1 −ln x + x2 −1 ,   )    x =e t (cos t +sin t ), π
                                                                  ≤t ≤
                                                                       π              3
                                                                                          ϕ
                                                                             ρ =3e 4 , 0 ≤ϕ ≤ .
                                                                                                     π
                                        y =e (cos t −sin t ), 6       4
                                              t
     1 ≤x ≤a +1 .                                                                                    3

                                        x =4(2 cos t −cos 2t ),             ρ =3(1 +sin ϕ ),
2.23   y=
          (1 −e    x
                    −e −x  )
                          , 0 ≤x ≤3 .
                                        
                                         y =4(2 sin t −sin 2t ),              π
                   2                                                          − ≤ϕ ≤0 .
                                                  0 ≤t ≤π .                    6

       y =arccos x − x −x 2 +4 ,                                             ρ =5(1 −cos ϕ ),
                                        x =6 cos 3 t ,            3
2.24                    1                        3
                                                             0 ≤t ≤ π .         π
                  0 ≤x ≤ .               y =6 sin t ,             2           − ≤ϕ ≤0 .
                        2                                                       3
       y =2 −e x ,                       x =3(t −sin t ),                            5
                                                                                        ϕ             π
2.25                                                      0 ≤t ≤π .         ρ =5e   12
                                                                                              , 0 ≤ϕ ≤ .
       ln 3 ≤x ≤ln 8 .                  y =3(1 −cos t ),                                             3