Технический перевод в повседневной жизни. Макеева М.Н. - 52 стр.

UptoLike

Materials science and Technology is the study of materials and how they can be fabricated to meet the
needs of modern technology. Using the laboratory techniques and knowledge of physics, chemistry, and metal-
lurgy, scientists are finding new ways of using metals, plastics and other materials.
Engineers must know how materials respond to external forces, such as tension, compression, torsion,
bending, and shear. All materials respond to these forces by elastic deformation. That is, the materials return
their original size and form when the external force disappears. The materials may also have permanent defor-
mation or they may fracture. The results of external forces are creep and fatigue.
Compression is a pressure causing a decrease in volume. When a material is subjected to a bending, shear-
ing, or torsion (twisting) force, both tensile and compressive forces are simultaneously at work. When a metal
bar is bent, one side of it is stretched and subjected to a tensional force, and the other side is compressed.
Tension is a pulling force; for example, the force in a cable holding weight. Under tension, a material usu-
ally stretches, returning to its original length if the force does not exceed the material’s elastic limit. Under lar-
ger tensions, the material does not return completely to its original condition, and under greater forces the mate-
rial ruptures.
Density (specific weight is the amount of mass in a unit volume. It is measured in kilograms per cubic me-
tre. The density of water is
1000 kg/m
3
but most materials have a higher density and sink in water. Aluminum alloys, with typical densities
around 2800 kg/m
3
are considered less dense than steels, which have typical densities around 7800 kg/m
3
. Den-
sity is important in any application where the material must not be heavy.
Strength is the force per unit area (stress) that a material can support without failing. The units are the
same as those of stiffness. MN/m
2
, but in this case the deformation is irreversible. The yield strength is the
stress at which a material first deforms plastically. For a metal the yield strength may be less than the fracture
strength, which is the stress at which it breaks. Many materials have a higher strength in compression than a
tension.
Toughness is the resistance of a material to breaking when there is a crack in it. For a material of given
toughness, the stress at which it will fail is inversely proportional to the square root of the size of the largest de-
fect present. Toughness is different from the strength: the toughness steels, for example, are different from ones
with highest tensile strength. Brittle materials have low toughness: glass can be broken along a chosen line by
first scratching it with a diamond. Composites can be designed to have considerably greater toughness than
their constituent materials. The example of a very tough composite is fiberglass that is very flexible and strong.
II. Translate the summary of the text into English.
Текст называется «Механические свойства материалов». Автор утверждает, что материалы облада-
ют такими механическими свойствами как сжатие, напряжение, плотность, сила и жесткость. Ученые
пытаются найти новые способы использования металлов, пластмассы и других материалов. Специали-
сты используют различные лабораторные методы, а также знание металлургии, физики и химии. Необ-
ходимо учитывать поведение различных материалов при воздействии на них внешними силами. Одни
материалы могут деформироваться, другие ломаться, третьиостаются неизменными. Согласно автору,
сжатие происходит в результате давления, после чего материал уменьшается в объеме. При небольшом
натяжении материал обычно растягивается. Если увеличить силу натяжения, материал может разо-
рваться. Сила и жесткостьдва важных физических свойства материалов. Например, стекловолокон-
ные материалы очень гибкие и обладают высокой степенью жесткости.
III. Compare the original and the translation. Which techniques have been used in the translation ?
TRANSFORMATION
A transformation is a change in the position, size, or shape of a geometric figure (such as a triangle). The
main transformations are reflection, enlargement, translation, and rotation. Other forms of transformations in-
clude stretching and shearing. Reflection, translation, and rotation change the position of the figure. They do
not alter the lengths of the sides or the area of the figure and so are called isometrics Stretching increases the
size of the figure along one axis. Shearing is similar to stretching but the area of the figure remains the same.
Enlargement increases the size of the whole figure.