Задачи по теоретической механике. Манаков Н.Л - 36 стр.

UptoLike

ρ
˙r =
r
2
m
(E + U
0
)
L
2
m
2
r
2
,
˙r =
r
2
m
E
L
2
m
2
r
2
.
L 6= 0 E 6 0
p
0
=
p
2m(E + U
0
)
L r
min
p
0
= L/r
min
E > U
0
+
L
2
2mr
2
min
U
0
6 E 6 0
dr
r
p
2
0
m
2
L
2
m
2
r
2
= dt
1
v
0
r
Z
r
min
dr
0
q
1 r
2
min
/r
0
2
= t t
0
q
r
2
r
2
min
= v
0
(t t
0
)
r(t) =
q
r
2
min
+ v
2
0
(t t
0
)
2
,
v
0
=
p
0
m
=
r
2
m
(E + U
0
) v
0
=
const t
0
r = r
min
ϕ(r) =
r
Z
r
min
(L/r
2
)dr
p
2m(E + U
0
) L
2
/r
2
=
r
Z
r
min
(r
min
/r
2
)dr
p
1 r
2
min
/r
2
=
= arccos
r
min
r
.
r
r(ϕ) =
r
min
cos ϕ
.
  4. Íàéòè óãîë îòêëîíåíèÿ òðàåêòîðèè èíôèíèòíîãî äâèæåíèÿ îò ïåðâîíà-
     ÷àëüíîãî íàïðàâëåíèÿ â çàâèñèìîñòè îò ïðèöåëüíîãî ïàðàìåòðà ρ.

Ðåøåíèå . 1) Óðàâíåíèå äâèæåíèÿ âíóòðè ÿìû:
               r
                   2             L2
      ṙ =           (E + U0 ) − 2 2 ,                                                                (4.11)
                   m            mr
âíå ÿìû:
               r
                   2     L2
      ṙ =           E − 2 2.                                                                         (4.12)
                   m    mr
Êàê âèäíî èç ýòèõ âûðàæåíèé, ïðè L 6= 0 è E 6 0 ÷àñòèöà
                                                p       ìîæåò äâèãàòü-
ñÿ òîëüêî âíóòðè ÿìû. Ïðè ýòîì èìïóëüñ å¼ p0 =     2m(E + U0 ) è ñâÿçàí
ñ ìîìåíòîì èìïóëüñà L è ìèíèìàëüíûì ðàññòîÿíèåì äî öåíòðà ïîëÿ rmin
ñîîòíîøåíèåì p0 = L/rmin . ×òîáû ïðèâåäåííûå âûøå âûðàæåíèÿ áûëè äåé-
                                          L2
ñòâèòåëüíû, íåîáõîäèìî, ÷òîáû E > −U0 +     2 . Òàêèì îáðàçîì, äâèæåíèå
                                        2mrmin
ñ ýíåðãèåé −U0 6 E 6 0 ôèíèòíî.
   Ïðîèíòåãðèðóåì óðàâíåíèå äâèæåíèÿ (4.11):
                                         Zr                                      q
          dr                       1                  dr0                                  2
r                           = dt →             q                    = t − t0 →       r2 − rmin = v0 (t − t0 )
    p20         L  2               v0                   2 /r 0 2
                                                   1 − rmin
          −                             rmin
    m2         m2 r 2
                                                      q
                                    ⇒ r(t) =               2 + v 2 (t − t )2 ,
                                                          rmin  0        0
                        r
          p0     2
ãäå v0 =     =     (E + U0 )  ñêîðîñòü äâèæåíèÿ ÷àñòèöû âíóòðè ÿìû (v0 =
          m     m
const), t0  ìîìåíò âðåìåíè, ïðè êîòîðîì r = rmin .
Äëÿ íàõîæäåíèÿ óðàâíåíèÿ òðàåêòîðèè âîñïîëüçóåìñÿ îáùèì ñîîòíîøåíèåì
(4.6):
                       Zr                                         Zr
                                   (L/r2 )dr                            (r /r2 )dr
      ϕ(r) =                p                                =          p min        =
                              2m(E + U0 ) − L2 /r2                            2 /r 2
                                                                         1 − rmin
                   rmin                                          rmin
                                                                                               rmin
                                                                                  = arccos          . (4.13)
                                                                                                r
Ðàçðåøàÿ ïîëó÷åííîå óðàâíåíèå îòíîñèòåëüíî r, íàõîäèì
                                                               rmin
                                                    r(ϕ) =          .
                                                              cos ϕ
                                                            35