ВУЗ:
Составители:
Рубрика:
( )
( )
( )
.
2
2
1
1
0
4
0
−
+
′′
= λ
λ
π
π
O
xS
exf
i
(16)
(15) (16) .
.
0)(
0
<
′
′
xS
, , , :
( ) ( )
( )
( )
( )( )
( )
( )
( )
( )
( )
( )
( )
( )
.
2
2
1
0
4
0
1
0
4
0
0
0
−
−
−
−
−
+
′′
=
=+
′′
=
===
∫∫
λ
λ
π
λ
λ
π
λ
π
λ
π
λ
λλ
O
xS
eexf
O
xS
eexf
dxexfdxexfF
i
xSi
i
xSi
xSi
b
a
xSi
b
a
7. .
( )
( )
∞→=
∫
−
xdexJ
nxi
n
2
1
2
0
sin
ϕ
π
π
ϕϕ
.
( )
ϕ
ϕ
n
ef
−
=
,
ϕ
ϕ
sin)(
=
S
2
3
,
2
21
π
ϕ
π
ϕ ==
. ,
.
( ) ( ) ( ) ( )
,1,1,1,1
2211
=
′
′
−=−=
′
′
= ϕϕϕϕ SSSS
( )
( )
∞→+
−−=
−
xxO
n
x
x
xJ
n
42
cos
2
1
ππ
π
.
.
( ) ( )
( )
dzezfF
zSλ
γ
λ
∫
=
, (17)
−
γ
C
,
( )
zf
)(zS
D
,
iπ 2π = f ( x0 )e 4 1 2 λS ′′( x0 ) + O λ−1 . ( ) (16) (15) (16) . . S ′′( x0 ) < 0 , , , : b b F (λ ) = ∫ f ( x ) e iλ S ( x ) dx = ∫ f ( x )eiλ ( −S ( x ))dx = a a iπ 2π = f ( x0 )e −iλ S ( x0 ) e 4 λS ′′( x0 ) + O λ−1 = ( ) iπ 2π = f ( x0 )e iλ S ( x0 ) e − 4 λS ′′( x0 ) + O λ−1 . ( ) 7. . 2π J n (x ) = 1 i ( x sin ϕ − nϕ ) 2π ∫e 0 dϕ x → ∞. f (ϕ ) = e − nϕ , S (ϕ ) = sin ϕ π 3π ϕ1 = ,ϕ 2 = . , 2 2 . S (ϕ1 ) = 1, S ′′(ϕ1 ) = −1, S (ϕ 2 ) = −1, S ′′(ϕ 2 ) = 1, πn π J n (x ) = 2 πx cos x − − + O x −1 ( ) x→∞. 2 4 . F (λ ) = ∫ f ( z ) e λ S ( z )dz , (17) γ γ− C, f (z ) S (z ) D,
Страницы
- « первая
- ‹ предыдущая
- …
- 9
- 10
- 11
- 12
- 13
- …
- следующая ›
- последняя »