ВУЗ:
Составители:
Рубрика:
( ) ( ) ( )
( )
.0
1
1
0
−
=
′
++≤
∫
λ
αλ
Odxxggdg
d
(14)
.
.
.4.
( )
xf
)(xS
];[ ba
,
)(xS
];[
0
bax ∈
0)(
0
>
′
′
xS
.
+∞
→
λ
( ) ( )
( )
( )
( )
( )
( )
1
0
4
0
2
0
−
+
′′
==
∫
λ
λ
π
λ
π
λ
λ
O
xS
eexfdxexfF
i
xSi
xSi
b
a
.
)(xS
′
0
x
0)(
0
>
′
′
xS
,
0
xxa <≤
0)(
0
<
′
xS
)(xS
,
bxx ≤<
0
0)(
0
>
′
xS
)(xS
.
-
[ ] [ ]
ba;;: →βαϕ
,
,
[ ]
( )
0
0,;0 x=∈ ϕβα
( )
( ) ( )
2
0
yxSyS +=ϕ
.
( )
( )
0
2
0
xS
′′
=
′
ϕ
. ,
( )
( )
( )( ) ( )
dyeyyfeF
yi
xSi
2
0
λ
β
α
λ
ϕϕλ
∫
′
=
.
( )( ) ( )
( )( ) ( )
( )
( )
( )
( )
.
2
2
1
00
2
1
1
0
4
0
1
4
0
2
−
−
+
′′
=
=+
′
=
′
∫
λ
λ
π
λ
λ
π
ϕϕϕϕ
π
π
λ
β
O
xS
exf
Oefdyeyyf
i
i
yi
(15)
u
y
−
=
,
[ ]
0;α
( )( )() ( )( )( )
=−
′
−=
′
∫∫
−
dueuufdyeyyf
uiyi
22
0
0
λ
α
λ
α
ϕϕϕϕ
1 ( ) d ≤ g (d ) + g (0) + ∫ g ′( x ) dx = O λ−1 . αλ 0 (14) . . .4. f (x ) S (x ) [ a; b ] , S (x ) x 0 ∈ [ a; b ] S ′′( x0 ) > 0 . λ → +∞ iπ 2π ( ) b F (λ ) = ∫ f ( x ) e iλ S ( x ) dx = f ( x0 )e iλ S ( x0 ) e 4 + O λ−1 a λS ′′( x0 ) . S ′(x ) x0 S ′′( x0 ) > 0 , a ≤ x < x0 S ′( x0 ) < 0 S (x ) , x0 < x ≤ b S ′( x0 ) > 0 S (x ) . - ϕ : [α ; β ] → [a; b ], , 0 ∈ [α ; β ], ϕ (0 ) = x0 S (ϕ ( y )) = S ( x0 ) + y 2 . ϕ ′(0 ) = 2 S ′′( x0 ) . , β F (λ ) = e iλ S ( x0 ) ∫ f (ϕ ( y ))ϕ ′( y ) e iλ y dy . 2 α β iπ π ∫ f (ϕ ( y ))ϕ ′( y ) e iλ y 2 dy = f (ϕ (0))ϕ ′(0)e 4 1 2 λ + O λ−1 = ( ) 0 iπ 2π ( ) (15) = f ( x0 )e 4 1 + O λ−1 . 2 λS ′′( x0 ) y = −u , [α ;0] 0 −α ∫ f (ϕ ( y ))ϕ ′( y ) e iλ y 2 dy = ∫ f (ϕ (− u ))ϕ ′(− u ) e iλ u du = 2 α 0
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »