ВУЗ:
Составители:
Рубрика:
,
( )
xf
)(xS
,
, (1)
.
3.
( )
xf
–
];[ ba
,
)(xS
–
];[ ba
0)(
≠
′
xS
];[ bax
∈
.
+∞
→
λ
( ) ( )
( )
( )
( )
( )
( )
( )
1
1
|
−
−
+
′
==
∫
λλλ
λλ
o
xS
xf
eidxexfF
b
a
xSixSi
b
a
.
.
, :
( )
(
)
( )
( )
( )
( )
( )
(
)
( )
( )
( )
( )
( )
dxe
xS
xf
dx
d
i
xS
xf
eied
xSi
xf
F
xSi
b
a
b
a
xSixSi
b
a
λ
λλ
λ
λ
λ
λ
∫
∫
′
+
+
′
=
′
=
−
−
1
1
|
0)(
≠
′
xS
,
)(xS
];[ ba
.
)(xSy
=
,
( )
dyeyh
yiλ
β
α
∫
,
, –
+∞
→
λ
,
.
2. .
1 :
0)(
≠
′
xS
];[ bax
∈
,
.
(
)
λF
.
,
( )
xf
)(xS
.
3.().
( )
xf
];0[ d
0
>
α
.
+∞
→
λ
( ) ( ) ( )
( )
1
42
0
0
2
2
1
2
−
+==
∫
λ
αλ
π
λ
π
αλ
Oefdxexf
i
x
id
.
, f (x ) S (x ) ,
, (1)
.
3. f (x ) –
[ a; b ] , S (x ) – [ a; b ]
S ′( x ) ≠ 0 x ∈ [ a; b ] . λ → +∞
iλ S ( x ) f ( x ) b
( )
b
F (λ ) = ∫ f ( x ) e iλ S ( x )
dx = (iλ )
−1
e | + o λ−1 .
a S ′( x ) a
.
, :
f (x ) −1 iλS ( x ) f ( x )
( )
b
F (λ ) = ∫ = (iλ ) e
b
iλ S ( x )
λ ′( )
d e
′( ) a| +
a
i S x S x
d f ( x ) iλ S ( x )
b
+ (iλ ) ∫a dx S ′(x ) e dx
−1
S ′( x ) ≠ 0 , S (x ) [ a; b ] .
y = S (x) ,
β
∫ h( y ) e
iλ y
dy ,
α
, – λ → +∞ ,
.
2. .
1 : S ′( x ) ≠ 0
x ∈ [ a; b ] ,
.
F (λ ) .
,
f (x ) S (x ) .
3.( ). f (x )
[0; d ] α > 0. λ → +∞
iπ
1 2π
( )
d i
αλ x 2
(λ ) = ∫ f (x ) e 2
dx = f (0 )e 4 + O λ−1 .
0
2 αλ
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »
