ВУЗ:
Составители:
Рубрика:
.
5
.
( )
)( xSxf
Rba
⊂
];[
,
( )
0≡xf
,
constxS
≡
)(
.
0
>
λ
,
(
)
+∞
→
λ
.
( ) ( )
( )
dxexfF
xS
b
a
λ
λ
∫
=
(6)
.
1.
)(xS
Rba
⊂
];[
, .
[ ]
baxMxS ;,)( ∈≤
. (6)
0
λ
.
0
λ
λ≥
( )
λ
λ
M
eF =
, (7)
−
.
.
)(xS
,
( )
[ ]
baxeCe
M
xS
;,
0
)(
0
∈≤
−
λ
λλ
,
( )
.
00
0
)( MxS
eCe
λλλ −−
=≤
,
( ) ( )
( ) ( ) ( )
( )
( )
dxexfedxeexfF
xS
b
a
M
xSxS
b
a
000
0
λ
λ
λλλ
λ
∫∫
≤=
−
(7) .
1.
( )
)( xSxf
[a;b],
0
=
x
,
)(xS
:
( ) ( )
,aSxS
<
a
x
≠
( )
.0
≠
′
aS
( )
( )
( )
( )
( )
.,
1
∞→
+
′
−
=
∫
λ
λλ
λ
λ
Oaf
aS
e
dxexf
aS
xS
b
a
(8)
.
( )
0
≠
′
aS
,
0
>
δ
,
( )
δ
+
≤
≤
≠
′
axa0aS
. (6) :
( ) ( )
( )
( )
( )
( ) ( )
λλλ
λ
δ
λ
δ
21
FFdxexfdxexfF
xS
b
a
xS
a
a
+=+=
∫∫
+
+
. (9)
.
5. f (x ) S ( x) [ a; b ] ⊂ R ,
f (x ) ≡ 0 , S ( x ) ≡ const . λ > 0,
b
( . λ → +∞ ) F (λ ) = ∫ f ( x ) e λ S ( x )dx (6)
a
.
1. S (x) [ a; b ] ⊂ R , .
S ( x ) ≤ M , x ∈ [a; b ] . (6)
λ0 . λ ≥ λ0
F (λ ) = e Mλ , (7)
− .
.
S (x) ,
e (λ −λ0 )S ( x ) ≤ C0 e Mλ , x ∈ [a; b] , e (λ −λ0 )S ( x ) ≤ C0 = e −λ0M .
,
b b
F (λ ) = ∫ f (x ) e
λ0 S ( x )
e (λ −λ0 )S ( x )
dx ≤ 0 e Mλ
∫ f (x ) e
λ0 S ( x )
dx
a a
(7) .
1. f (x ) S ( x)
[a;b],
x = 0, S (x) : S ( x ) < S (a ),
x≠a S ′(a ) ≠ 0.
e λS ( a ) 1
b
∫ f (x ) e f (a ) + O ,
λ S (x )
dx = λ → ∞.
a
− λS ′(a ) λ
(8)
.
S ′(a ) ≠ 0 , δ >0 ,
S ′(a ) ≠ 0 a ≤ x ≤ a +δ . (6) :
a +δ b
F (λ ) = ∫ f (x ) e
λ S (x)
dx + ∫ f (x ) e
λ S (x )
dx = F1 (λ ) + F2 (λ ) . (9)
a a +δ
Страницы
- « первая
- ‹ предыдущая
- …
- 2
- 3
- 4
- 5
- 6
- …
- следующая ›
- последняя »
