ВУЗ:
Составители:
Рубрика:
.
5
.
( )
)( xSxf
Rba
⊂
];[
,
( )
0≡xf
,
constxS
≡
)(
.
0
>
λ
,
(
)
+∞
→
λ
.
( ) ( )
( )
dxexfF
xS
b
a
λ
λ
∫
=
(6)
.
1.
)(xS
Rba
⊂
];[
, .
[ ]
baxMxS ;,)( ∈≤
. (6)
0
λ
.
0
λ
λ≥
( )
λ
λ
M
eF =
, (7)
−
.
.
)(xS
,
( )
[ ]
baxeCe
M
xS
;,
0
)(
0
∈≤
−
λ
λλ
,
( )
.
00
0
)( MxS
eCe
λλλ −−
=≤
,
( ) ( )
( ) ( ) ( )
( )
( )
dxexfedxeexfF
xS
b
a
M
xSxS
b
a
000
0
λ
λ
λλλ
λ
∫∫
≤=
−
(7) .
1.
( )
)( xSxf
[a;b],
0
=
x
,
)(xS
:
( ) ( )
,aSxS
<
a
x
≠
( )
.0
≠
′
aS
( )
( )
( )
( )
( )
.,
1
∞→
+
′
−
=
∫
λ
λλ
λ
λ
Oaf
aS
e
dxexf
aS
xS
b
a
(8)
.
( )
0
≠
′
aS
,
0
>
δ
,
( )
δ
+
≤
≤
≠
′
axa0aS
. (6) :
( ) ( )
( )
( )
( )
( ) ( )
λλλ
λ
δ
λ
δ
21
FFdxexfdxexfF
xS
b
a
xS
a
a
+=+=
∫∫
+
+
. (9)
. 5. f (x ) S ( x) [ a; b ] ⊂ R , f (x ) ≡ 0 , S ( x ) ≡ const . λ > 0, b ( . λ → +∞ ) F (λ ) = ∫ f ( x ) e λ S ( x )dx (6) a . 1. S (x) [ a; b ] ⊂ R , . S ( x ) ≤ M , x ∈ [a; b ] . (6) λ0 . λ ≥ λ0 F (λ ) = e Mλ , (7) − . . S (x) , e (λ −λ0 )S ( x ) ≤ C0 e Mλ , x ∈ [a; b] , e (λ −λ0 )S ( x ) ≤ C0 = e −λ0M . , b b F (λ ) = ∫ f (x ) e λ0 S ( x ) e (λ −λ0 )S ( x ) dx ≤ 0 e Mλ ∫ f (x ) e λ0 S ( x ) dx a a (7) . 1. f (x ) S ( x) [a;b], x = 0, S (x) : S ( x ) < S (a ), x≠a S ′(a ) ≠ 0. e λS ( a ) 1 b ∫ f (x ) e f (a ) + O , λ S (x ) dx = λ → ∞. a − λS ′(a ) λ (8) . S ′(a ) ≠ 0 , δ >0 , S ′(a ) ≠ 0 a ≤ x ≤ a +δ . (6) : a +δ b F (λ ) = ∫ f (x ) e λ S (x) dx + ∫ f (x ) e λ S (x ) dx = F1 (λ ) + F2 (λ ) . (9) a a +δ
Страницы
- « первая
- ‹ предыдущая
- …
- 2
- 3
- 4
- 5
- 6
- …
- следующая ›
- последняя »