ВУЗ:
Составители:
Рубрика:
( )
λ
2
F
.
)(xS
[a;b]
,
( )
caSxS −≤)(
b
≤
≤
+
xa
δ
,
−
>
0c
. 1
λ
( )
( )
( )
caS
eF
−
≤
λ
λ
02
,
( )
λ
2
F
(
)
aS
e
λ
.
( )
λ
1
F
:
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
xd
xS
xf
dx
d
e
xS
exf
ed
xS
xf
F
a
a
xS
a
a
xS
xS
a
a
∫∫
+
+
+
′
−
′
=
′
=
δ
λ
δ
λ
λ
δ
λλλ
λ
1
|
1
(10)
δ
+
=
ax
( )
aS
e
λ
∞
→
λ
,
( )
0)( <−+ aSaS δ
.
.
[ ]
δ
+
aa;
( )
0
<
′
xS
0
1
>
S
, ,
( )
1
SxS
−
≤
′
[ ]
δ
+
∈
aax ;
.
( ) ( ) ( )
ξδ SaxaSaS
′
−=−+ )(
,
( )
δξ +∈aa;
,
() ( )
axSaSaS −−≤−+
1
)( δ
[ ]
δ
+
∈
aax ;
.
( )
( )
( )
′
=
xS
xf
dx
d
xf
1
:
( )
11
Mxf ≤
[ ]
δ
+
∈
aax ;
. ,
( )
( )
( )
( )
( )
( ) ( )( )
≤≤
′
∫∫
+
−−
+
xdexfexd
xS
xf
dx
d
e
a
a
aSxSaS
a
a
xS
δ
λλ
δ
λ
1
( )
λλ
δ
λ
1
1
1
1
1
c
S
M
xdeM
a
a
axS
=<≤
∫
+
−−
∞
→
λ
.
(10)
( )
( )
( )
( )
( )
+
′
−
=
−2
1
λ
λ
λ
λ
O
aS
af
eF
aS
∞
→
λ
.
( )
λ
2
F
(9) (8).
5.
+∞
→
p
,
( ) ( )
dxexfpF
px−
∞
∫
=
0
,
F2 (λ ) . S (x) [a;b] , S ( x ) ≤ S (a ) − c a +δ ≤ x ≤ b, c >0− . 1 λ F2 (λ ) ≤ 0 e λ ( S ( a )−c ) , F2 (λ ) e λS (a ) . F1 (λ ) : f (x ) f ( x )e λ S ( x ) a +δ 1 d f (x ) a +δ a +δ F1 (λ ) = ∫ λS ′( x ) d e λ S (x) (= ) λS ′( x ) a λ | − ∫ eλ S (x ) d x (10) dx S ′( x ) a a x = a +δ e λS ( a ) λ →∞, S (a + δ ) − S (a ) < 0 . . [a; a + δ ] S ′( x ) < 0 S1 > 0 , , S ′( x ) ≤ − S1 x ∈ [a; a + δ ] . S (a + δ ) − S (a ) = ( x − a )S ′(ξ ) , ξ ∈ (a; a + δ ) , S ( a + δ ) − S (a ) ≤ − S1 ( x − a ) x ∈ [a; a + δ ] . d f (x ) f1 ( x ) = dx S ′( x ) : f1 ( x ) ≤ M 1 x ∈ [a; a + δ ] . , d f (x ) a +δ a +δ ∫ f (x ) e λ S (x) ∫ e d x e −λS (a ) ≤ λ ( S ( x )− S ( a )) dx ≤ dx S ′( x ) 1 a a a +δ M 1 c1 ≤ M 1 ∫ e −S1 ( x −a )λ d x < = λ →∞. a S1λ λ (10) f (a ) F1 (λ ) = e λ S ( a ) + O λ−2 ( ) λ →∞. − λS ′(a ) F2 (λ ) (9) (8). 5. ∞ p → +∞ , F ( p ) = ∫ f ( x ) e dx , − px 0
Страницы
- « первая
- ‹ предыдущая
- …
- 3
- 4
- 5
- 6
- 7
- …
- следующая ›
- последняя »