ВУЗ:
Составители:
Рубрика:
102
∂
∂ρ
ρ
u
a=−
,
∂
∂ϕ
ρ
ϕ
u
a=−
,
∂
∂
u
z
a
z
=−
; (4.12)
â ñôåðè÷åñêèõ êîîðäèíàòàõ ýòà ñèñòåìà èìååò âèä:
∂
∂
u
r
a
r
=−
,
∂
∂θ
θ
u
ra
=−
,
∂
∂ϕ
θ
ϕ
u
ra=− sin
. (4.13)
Ïðèìåð 3. Íàéòè ïîòåíöèàë ïîëÿ
ρρρρ
azee
z
e
z
=− +
+=
+
1
1
2
ρ
ϕϕ
ρ
ρϕ
arctg cos sin
ln
.
Ðåøåíèå. Ïðåæäå âñåãî óáåäèìñÿ â ïîòåíöèàëüíîñòè ýòîãî
ïîëÿ. Íåñëîæíûå âû÷èñëåíèÿ ïîêàçûâàþò, ÷òî
rot
ρ
a = 0
. Îäíàêî
îáëàñòü îïðåäåëåíèÿ ïîëÿ
ρ
a
íåîäíîñâÿçíà: îíî íåîïðåäåëåíî íà
îñè z, ò. å. ïðè
ρ
= 0. Ñëåäîâàòåëüíî, íåîáõîäèìî ïðîâåðèòü ðà-
âåíñòâî íóëþ öèðêóëÿöèè ïîëÿ
ρ
a
ïî êàêîìó-ëèáî êîíòóðó, îõ-
âàòûâàþùåìó îñü z. Âûáåðåì â êà÷åñòâå òàêîãî êîíòóðà îêðóæ-
íîñòü
ρ
=R, z = 0. Ýòî äàåò:
ρ
ρ
adl ad ad R d
R
⋅= + = =
=
∫∫∫
()sin
ρϕρ
π
ρρ ϕ ϕϕ
0
2
0
.
Ñëåäîâàòåëüíî, ïîëå
ρ
a
ÿâëÿåòñÿ ïîòåíöèàëüíûì. Èñêîìûé ïî-
òåíöèàë u (
ρ
,
ϕ
, z) ÿâëÿåòñÿ ðåøåíèåì ñèñòåìû (4.12):
∂
∂ρ ρ
ϕ
∂
∂ϕ
ρϕ
∂
∂
ρ
u
z
u
u
zz
=+
=−
=
+
1
1
2
arctg cos ,
sin ,
ln
.
(4.14)
Èíòåãðèðîâàíèå ýòîé ñèñòåìû ìîæíî íà÷èíàòü ñ ëþáîãî óðàâ-
íåíèÿ, íî ïðîùå íà÷àòü ñ òðåòüåãî:
uzC=⋅ +ln arctg ( , )
ρρϕ
1
.
Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïåðâîå óðàâíåíèå (4.14), ïîëó÷àåì:
11
1
ρ
∂ρϕ
∂ρ ρ
ϕ
arctg
(, )
arctg cosz
C
z
+=+
,
∂u = −a ∂u = −ρa ∂u ∂ρ ρ , ∂ϕ ϕ , = −az ; (4.12) ∂z â ñôåðè÷åñêèõ êîîðäèíàòàõ ýòà ñèñòåìà èìååò âèä: ∂u = −a ∂u = −ra ∂u = −r sin θ a r, θ , ∂ϕ ϕ. (4.13) ∂r ∂θ Ïðèìåð 3. Íàéòè ïîòåíöèàë ïîëÿ ρ ρ ρ ln ρ ρ a = − 1 arctg z + cos ϕ eρ + sin ϕ eϕ = e ρ 1 + z2 z . Ðåøåíèå. Ïðåæäå âñåãî óáåäèìñÿ â ïîòåíöèàëüíîñòè ýòîãî ρ ïîëÿ. Íåñëîæíûå âû÷èñëåíèÿ ïîêàçûâàþò, ÷òî rot a = 0 . Îäíàêî ρ îáëàñòü îïðåäåëåíèÿ ïîëÿ a íåîäíîñâÿçíà: îíî íåîïðåäåëåíî íà îñè z, ò. å. ïðè ρ = 0. Ñëåäîâàòåëüíî, íåîáõîäèìî ïðîâåðèòü ðà- ρ âåíñòâî íóëþ öèðêóëÿöèè ïîëÿ a ïî êàêîìó-ëèáî êîíòóðó, îõ- âàòûâàþùåìó îñü z. Âûáåðåì â êà÷åñòâå òàêîãî êîíòóðà îêðóæ- íîñòü ρ = R, z = 0. Ýòî äàåò: ρ ρ 2π ∫ a ⋅ dl = ∫ (aρ dρ + ρaϕ dϕ )ρ = R = R ∫ sin ϕ dϕ = 0 . 0 ρ Ñëåäîâàòåëüíî, ïîëå a ÿâëÿåòñÿ ïîòåíöèàëüíûì. Èñêîìûé ïî- òåíöèàë u (ρ, ϕ, z) ÿâëÿåòñÿ ðåøåíèåì ñèñòåìû (4.12): ∂u = 1 arctg z + cos ϕ , ∂ρ ρ ∂u ∂ϕ = −ρ sin ϕ , (4.14) ∂u = ln ρ2 . ∂z 1 + z Èíòåãðèðîâàíèå ýòîé ñèñòåìû ìîæíî íà÷èíàòü ñ ëþáîãî óðàâ- íåíèÿ, íî ïðîùå íà÷àòü ñ òðåòüåãî: u = ln ρ ⋅ arctg z + C1( ρ, ϕ ) . Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïåðâîå óðàâíåíèå (4.14), ïîëó÷àåì: 1 ∂C ( ρ, ϕ ) 1 arctg z + 1 = arctg z + cos ϕ , ρ ∂ρ ρ 102
Страницы
- « первая
- ‹ предыдущая
- …
- 100
- 101
- 102
- 103
- 104
- …
- следующая ›
- последняя »