Задачи по векторному анализу. Михайлов В.К - 102 стр.

UptoLike

Рубрика: 

102
∂ρ
ρ
u
a=−
,
∂ϕ
ρ
ϕ
u
a=−
,
u
z
a
z
=−
; (4.12)
â ñôåðè÷åñêèõ êîîðäèíàòàõ ýòà ñèñòåìà èìååò âèä:
u
r
a
r
=−
,
∂θ
θ
u
ra
=−
,
∂ϕ
θ
ϕ
u
ra=− sin
. (4.13)
Ïðèìåð 3. Íàéòè ïîòåíöèàë ïîëÿ
ρρρρ
azee
z
e
z
=− +
+=
+
1
1
2
ρ
ϕϕ
ρ
ρϕ
arctg cos sin
ln
.
Ðåøåíèå. Ïðåæäå âñåãî óáåäèìñÿ â ïîòåíöèàëüíîñòè ýòîãî
ïîëÿ. Íåñëîæíûå âû÷èñëåíèÿ ïîêàçûâàþò, ÷òî
rot
ρ
a = 0
. Îäíàêî
îáëàñòü îïðåäåëåíèÿ ïîëÿ
ρ
a
íåîäíîñâÿçíà: îíî íåîïðåäåëåíî íà
îñè z, ò. å. ïðè
ρ
= 0. Ñëåäîâàòåëüíî, íåîáõîäèìî ïðîâåðèòü ðà-
âåíñòâî íóëþ öèðêóëÿöèè ïîëÿ
ρ
a
ïî êàêîìó-ëèáî êîíòóðó, îõ-
âàòûâàþùåìó îñü z. Âûáåðåì â êà÷åñòâå òàêîãî êîíòóðà îêðóæ-
íîñòü
ρ
=R, z = 0. Ýòî äàåò:
ρ
ρ
adl ad ad R d
R
⋅= + = =
=
()sin
ρϕρ
π
ρρ ϕ ϕϕ
0
2
0
.
Ñëåäîâàòåëüíî, ïîëå
ρ
a
ÿâëÿåòñÿ ïîòåíöèàëüíûì. Èñêîìûé ïî-
òåíöèàë u (
ρ
,
ϕ
, z) ÿâëÿåòñÿ ðåøåíèåì ñèñòåìû (4.12):
∂ρ ρ
ϕ
∂ϕ
ρϕ
ρ
u
z
u
u
zz
=+
=−
=
+
1
1
2
arctg cos ,
sin ,
ln
.
(4.14)
Èíòåãðèðîâàíèå ýòîé ñèñòåìû ìîæíî íà÷èíàòü ñ ëþáîãî óðàâ-
íåíèÿ, íî ïðîùå íà÷àòü ñ òðåòüåãî:
uzC=⋅ +ln arctg ( , )
ρρϕ
1
.
Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïåðâîå óðàâíåíèå (4.14), ïîëó÷àåì:
11
1
ρ
∂ρϕ
∂ρ ρ
ϕ
arctg
(, )
arctg cosz
C
z
+=+
,
                  ∂u = −a ∂u = −ρa ∂u
                  ∂ρ     ρ ,
                             ∂ϕ    ϕ ,    = −az ;                        (4.12)
                                       ∂z
â ñôåðè÷åñêèõ êîîðäèíàòàõ ýòà ñèñòåìà èìååò âèä:
               ∂u = −a ∂u = −ra ∂u = −r sin θ a
                      r,       θ , ∂ϕ          ϕ.                        (4.13)
               ∂r        ∂θ
     Ïðèìåð 3. Íàéòè ïîòåíöèàë ïîëÿ
           ρ                       ρ           ρ     ln ρ ρ
           a = − 1 arctg z + cos ϕ  eρ + sin ϕ eϕ =       e
                ρ                                   1 + z2 z .
     Ðåøåíèå. Ïðåæäå âñåãî óáåäèìñÿ â ïîòåíöèàëüíîñòè ýòîãî
                                                   ρ
ïîëÿ. Íåñëîæíûå âû÷èñëåíèÿ ïîêàçûâàþò, ÷òî rot a = 0 . Îäíàêî
                             ρ
îáëàñòü îïðåäåëåíèÿ ïîëÿ a íåîäíîñâÿçíà: îíî íåîïðåäåëåíî íà
îñè z, ò. å. ïðè ρ = 0. Ñëåäîâàòåëüíî, íåîáõîäèìî ïðîâåðèòü ðà-
                                   ρ
âåíñòâî íóëþ öèðêóëÿöèè ïîëÿ a ïî êàêîìó-ëèáî êîíòóðó, îõ-
âàòûâàþùåìó îñü z. Âûáåðåì â êà÷åñòâå òàêîãî êîíòóðà îêðóæ-
íîñòü ρ = R, z = 0. Ýòî äàåò:

             ρ    ρ                                   2π

           ∫ a ⋅ dl   = ∫ (aρ dρ + ρaϕ dϕ )ρ = R = R ∫ sin ϕ dϕ = 0 .
                                                      0

                        ρ
Ñëåäîâàòåëüíî, ïîëå a ÿâëÿåòñÿ ïîòåíöèàëüíûì. Èñêîìûé ïî-
òåíöèàë u (ρ, ϕ, z) ÿâëÿåòñÿ ðåøåíèåì ñèñòåìû (4.12):

                            ∂u = 1 arctg z + cos ϕ ,
                            ∂ρ ρ
                            ∂u
                            ∂ϕ = −ρ sin ϕ ,
                                                                       (4.14)
                            ∂u = ln ρ2 .
                            ∂z 1 + z

Èíòåãðèðîâàíèå ýòîé ñèñòåìû ìîæíî íà÷èíàòü ñ ëþáîãî óðàâ-
íåíèÿ, íî ïðîùå íà÷àòü ñ òðåòüåãî:
                          u = ln ρ ⋅ arctg z + C1( ρ, ϕ ) .
Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïåðâîå óðàâíåíèå (4.14), ïîëó÷àåì:

                 1          ∂C ( ρ, ϕ ) 1
                   arctg z + 1         = arctg z + cos ϕ ,
                 ρ            ∂ρ        ρ


                                        102