Задачи по векторному анализу. Михайлов В.К - 103 стр.

UptoLike

Рубрика: 

103
îòêóäà
CC
12
=+
ρϕ ϕ
cos ( )
,
ò. å.
uzC=⋅ + +ln arctg cos ( )
ρρϕϕ
2
.
Ïîäñòàâëÿÿ ïîñëåäíåå âûðàæåíèå âî âòîðîå óðàâíåíèå ñèñòåìû
(4.14), ïîëó÷àåì:
−+=
ρϕ
∂ϕ
ρϕ
sin sin
C
2
,
ò. å. Ñ
2
= const =C. Òàêèì îáðàçîì, èñêîìûé ïîòåíöèàë
uz z C( , , ) ln arctg cos
ρϕ ρ ρ ϕ
=⋅ + +
.
Çàäà÷è
Óñòàíîâèòü, ÿâëÿþòñÿ ëè ïîòåíöèàëüíûìè ñëåäóþùèå âåê-
òîðíûå ïîëÿ, è åñëè äà, òî âû÷èñëèòü èõ ïîòåíöèàëû ñ òî÷íîñ-
òüþ äî àääèòèâíîé ïîñòîÿííîé:
4.44.
ρρ
ae
=
+
ρ
ρ
ρ
2
4
;
4.45.
ρρ
af e= ()
ρ
ρ
;
4.46.
ρρρρ
aeeze
z
=+ + +(sin)cos22
ρϕ ϕ
ρϕ
;
4.47.
ρρ
ae=
ρ
ϕ
;
4.48.
ρρ ρ
aze ze
z
=+
ρρ
ρ
(/ )
22
2
;
4.49.
ρρ
ae=
ϕ
ρ
/
;
4.50.
ρρ ρρ
ae e
e
eze
z
=+ +
ρ
ρ
ρ
ϕ
ϕ
ϕ
ρ
sin
cos
2
;
4.51.
ρρ ρρ
ae eze
z
=+ +
ρ
ϕ
ρ
ρϕ
;
4.52.
ρρ
afre
r
= ()
;
îòêóäà
                               C1 = ρ cos ϕ + C2 (ϕ ) ,
ò. å.
                       u = ln ρ ⋅ arctg z + ρ cos ϕ + C2(ϕ ) .
Ïîäñòàâëÿÿ ïîñëåäíåå âûðàæåíèå âî âòîðîå óðàâíåíèå ñèñòåìû
(4.14), ïîëó÷àåì:
                                         ∂C2
                           − ρ sin ϕ +       = −ρ sin ϕ ,
                                         ∂ϕ
ò. å. Ñ2 = const = C. Òàêèì îáðàçîì, èñêîìûé ïîòåíöèàë
                     u( ρ, ϕ , z ) = ln ρ ⋅ arctg z + ρ cos ϕ + C .


                                     Çàäà÷è
     • Óñòàíîâèòü, ÿâëÿþòñÿ ëè ïîòåíöèàëüíûìè ñëåäóþùèå âåê-
òîðíûå ïîëÿ, è åñëè äà, òî âû÷èñëèòü èõ ïîòåíöèàëû ñ òî÷íîñ-
òüþ äî àääèòèâíîé ïîñòîÿííîé:
              ρ          ρ      ρ
        4.44. a =               eρ ;
                      ρ2 + 4
                ρ          ρ
        4.45.   a = f ( ρ )eρ ;
                ρ                   ρ            ρ  ρ
        4.46.   a = (2ρ + sin ϕ )eρ + cos ϕ eϕ + 2 zez ;
                ρ     ρ
        4.47.   a = ρeϕ ;
                ρ       ρ                   ρ
        4.48.   a = ρzeρ + ( ρ 2 / 2 − z 2 )ez ;
                ρ ρ
        4.49.   a = eϕ / ρ ;
              ρ            ρ eρ cos ϕ ρ       ρ
        4.50. a = eρ sin ϕ eρ +       eϕ + 2 zez ;
                                 ρ
              ρ    ρ ϕρ         ρ
        4.51. a = ρeρ + ρ eϕ + zez ;
              ρ         ρ
        4.52. a = f (r )er ;




                                         103