Задачи по векторному анализу. Михайлов В.К - 99 стр.

UptoLike

Рубрика: 

99
ρ
ρ
adl ad d R
LL
R
⋅= = =
∫∫
ρ
ρρπρ
44)2
0
sin( /
.
Ïðèìåð 3. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρρρρ
aezee
z
=++
ρϕ ρ ρ
ρϕ
sin
3
ïî êîíòóðó Ñ :
ρ
= sin
ϕ
, 0
ϕ
π
, z =0.
Ðåøåíèå. Íà êîíòóðå Ñ èìååì: z = 0, dz = 0,
ρ
= sin
ϕ
,
d
ρ
= cos
ϕ
d
ϕ
, 0
ϕ
π
. Òîãäà èñêîìàÿ öèðêóëÿöèÿ
ρ
ρ
a dl a d a d a dz d
z
⋅= + + = ++= =
()sincos
sin
ρϕ
π
ρρ ϕ ϕ ϕϕ
ϕ
2
3
0
00
3
0
.
Çàäà÷è
4.37. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρρ ρ
are Rr e
r
=++()sin
θ
ϕ
ïî îêðóæíîñòè r=R,
θ=π
/2 â íàïðàâëåíèè âîçðàñ-
òàíèÿ óãëà
ϕ
.
4.38. Âû÷èñëèòü ðàáîòó ïîëÿ
ρρρρ
aeee
z
=++
ρϕ ρϕ ρ
ρϕ
cos sin
ïî âèòêó âèíòîâîé ëèíèè L:
ρ
=R, 0
ϕ
2
π
, z
.
4.39. Âû÷èñëèòü ðàáîòó ïîëÿ
ρρ ρ ρ
are e e
r
=+ +2
θϕ ϕ
θϕ
cos
ïî ïî-
ëóîêðóæíîñòè L : r=R,
ϕ
= 0, 0
θ
π
.
4.40. Âû÷èñëèòü ðàáîòó ïîëÿ
ρρ ρ
ae e
r
=+sin sin
2
2
θθ
θ
ïî ïðÿ-
ìîé L:
ϕ=π
/2, r = 1/(sin
θ
),
π
/6
θ
π
/2.
4.41. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρρ ρ ρ
azeee
z
=++
ρϕ
ρρ
ïî îê-
ðóæíîñòè
ρ
=R, z =0.
4.42. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρρρ
aee=+cos
ϕρ
ρϕ
ïî
êîíòóðó
ρ
= sin
ϕ
(0
ϕ
π
).
4.43. Âû÷èñëèòü ðàáîòó ïîëÿ
ρρρ
aeer
r
=+(cos sin )/2
3
θθ
θ
ïî
ïîëóîêðóæíîñòè L : r=R,
ϕ
= 0, 0
θ
π
.
4.3.7. Âû÷èñëåíèå ñêàëÿðíîãî ïîòåíöèàëà
Ïðåæäå ÷åì âû÷èñëÿòü ïîòåíöèàë âåêòîðíîãî ïîëÿ
a
â êðè-
âîëèíåéíûõ êîîðäèíàòàõ, íåîáõîäèìî óáåäèòüñÿ, ÷òî ýòî ïîëå
                      ρ ρ                  R

                    ∫ a ⋅ dl = ∫ a ρ d ρ = ∫ 4ρ sin(π / 4)dρ = R 2 .
                    L         L         0

     Ïðèìåð          3.     Âû÷èñëèòü       öèðêóëÿöèþ           ïîëÿ
 ρ         ρ      ρ       ρ
a = ρ sinϕ eρ + ρzeϕ + ρ ez ïî êîíòóðó Ñ : ρ = sinϕ, 0 ≤ ϕ ≤ π, z = 0.
                        3


     Ðåøåíèå. Íà êîíòóðå Ñ èìååì: z = 0, dz = 0, ρ = sin ϕ ,
dρ = cosϕdϕ, 0 ≤ ϕ ≤ π. Òîãäà èñêîìàÿ öèðêóëÿöèÿ

  ρ ρ
                                                                               π
                                                                          sin 3 ϕ
∫ a ⋅ dl   = ∫ (aρ dρ + ρaϕ dϕ + az dz ) = ∫ sin 2 ϕ cos ϕ dϕ + 0 + 0 =
                                                                             3 0
                                                                                  = 0.



                                      Çàäà÷è
                                                   ρ ρ                    ρ
           4.37. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = rer + ( R + r )sin θ eϕ
                 ïî îêðóæíîñòè r = R, θ = π/2 â íàïðàâëåíèè âîçðàñ-
                 òàíèÿ óãëà ϕ.
                                            ρ           ρ           ρ      ρ
           4.38. Âû÷èñëèòü ðàáîòó ïîëÿ a = ρ cos ϕ eρ + ρ sin ϕ eϕ + ρez
                 ïî âèòêó âèíòîâîé ëèíèè L: ρ = R, 0 ≤ ϕ ≤ 2π, z = ϕ.
                                          ρ ρ             ρ       ρ
           4.39. Âû÷èñëèòü ðàáîòó ïîëÿ a = rer + 2θ cos ϕ eθ + ϕ eϕ ïî ïî-
                 ëóîêðóæíîñòè L : r = R, ϕ = 0, 0 ≤ θ ≤ π.
                                           ρ         ρ         ρ
           4.40. Âû÷èñëèòü ðàáîòó ïîëÿ a = sin 2 θ er + sin 2θ eθ ïî ïðÿ-
                 ìîé L: ϕ = π/2, r = 1/(sinθ), π/6 ≤ θ ≤ π/2.
                                                 ρ ρ       ρ      ρ
           4.41. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = zeρ + ρeϕ + ρez ïî îê-
                 ðóæíîñòè ρ = R, z = 0.
                                                    ρ         ρ       ρ
           4.42. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = cos ϕ eρ + ρ eϕ ïî
                 êîíòóðó ρ = sinϕ (0 ≤ ϕ ≤ π).
                                            ρ          ρ         ρ
           4.43. Âû÷èñëèòü ðàáîòó ïîëÿ a = (2 cos θ er + sin θ eθ ) / r 3 ïî
                 ïîëóîêðóæíîñòè L : r = R, ϕ = 0, 0 ≤ θ ≤ π.

                 4.3.7. Âû÷èñëåíèå ñêàëÿðíîãî ïîòåíöèàëà
    Ïðåæäå ÷åì âû÷èñëÿòü ïîòåíöèàë âåêòîðíîãî ïîëÿ aρ â êðè-
âîëèíåéíûõ êîîðäèíàòàõ, íåîáõîäèìî óáåäèòüñÿ, ÷òî ýòî ïîëå


                                            99