Задачи по аналитической геометрии. Микенберг М.А. - 6 стр.

UptoLike

Составители: 

~
b(1; 1; 3),~c(2; 3; 0) ~p
~a,
~
b,~c
{~e
1
, ~e
2
}
{~e
1
0
, ~e
2
0
}
µ
2 3
1 1
.
~x(1; 2)
~x
{~e
1
, ~e
2
, ~e
3
}
{~e
1
0
, ~e
2
0
, ~e
3
0
}
1 2 3
1 1 0
0 3 2
.
~x(1; 2; 3)
~x
{~e
1
, ~e
2
} {~e
1
0
, ~e
2
0
}
~e
1
(1; 2) ~e
2
(3; 4)
~e
1
0
(1; 1) ~e
2
0
(1; 2) {~e
1
, ~e
2
}
{~e
1
0
, ~e
2
0
} ~p {~e
1
, ~e
2
}
~p(2; 5) ~p {~e
1
0
, ~e
2
0
}
{~e
1
, ~e
2
, ~e
3
} {~e
1
0
, ~e
2
0
, ~e
3
0
}
~e
1
(1; 2; 3) ~e
2
(1; 0; 1) ~e
3
(0; 2; 1) ~e
1
0
(0; 1; 2) ~e
2
0
(1; 2; 3) ~e
3
0
(0; 1; 1)
{~e
1
, ~e
2
, ~e
3
} {~e
1
0
, ~e
2
0
, ~e
3
0
}
~p {~e
1
, ~e
2
, ~e
3
} ~p(1; 2; 1)
~p {~e
1
0
, ~e
2
0
, ~e
3
0
}
n n > 1
m
1
, m
2
, ..., m
n
P
n
i=1
m
i
6= 0
A
1
, A
2
, ..., A
n
M
m
1
MA
1
+ m
2
MA
2
+ ... + m
n
MA
n
=
~
0,
O
OM =
1
P
n
i=1
m
i
(m
1
OA
1
+ m
2
OA
2
+ ... + m
n
OA
n
).