Задача Штурма-Лиувилля. Молчанова Л.А. - 13 стр.

UptoLike

Составители: 

Рубрика: 

0 = 0
Z
˜
b
˜a
sin(
π ˜a π x + 2 π ˜a ˜n 2 π x ˜n
2
˜
b + 2 ˜a
) sin(
π ˜a π x + 2 π ˜a ˜m 2 π x ˜m
2
˜
b + 2 ˜a
) dx
0
˜
b
2
˜a
2
(1 + 2
˜
k) π (˜a x)
2 (
˜
b + ˜a)
λ
k
=
(2k + 1)
2
π
2
4(b a)
2
, k = 1, 2, 3, . . . ,
y
k
(x) = sin(
(2k + 1)π(a x)
2(b a)
), k = 1, 2, 3, . . . .
λ = 0 :
λ := 0
   >y:='y':Yn(x,k):simplify(subs(y(x)=%,eq));

                                                        0=0

Ïðîâåðèì ãðàíè÷íûå óñëîâèÿ:
  >Yn(a,k)=0;simplify(D[1](Yn)(b,k))=0;
                                0=0
                                0=0
Ïðîâåðèì îðòîãîíàëüíîñòü ñîáñòâåííûõ ôóíêöèé íà îòðåçêå [a,b]:
  >assume(n,posint):assume(m,posint):
  >Int(Yn(x,n)*Yn(x,m),x=a..b);simplify(value(%));
  Z        b̃
                       π ã − π x + 2 π ã ñ − 2 π x ñ        π ã − π x + 2 π ã m̃ − 2 π x m̃
                sin(                                     ) sin(                                   ) dx
      ã                         −2 b̃ + 2 ã                              −2 b̃ + 2 ã
                                                          0
Âû÷èñëèì íîðìó ñîáñòâåííûõ ôóíêöèé:
  >Norma:=Int(Yn(x,n)^2,x=a..b):simplify(value(%));

                                                        b̃ ã
                                                          −
                                                        2 2
   Ìîæíî ïðåîáðàçîâàòü àðãóìåíò ó ñîáñòâåííûõ ôóíêöèé ê áîëåå óäîá-
íîìó âèäó:
   >simplify(collect(
>(Pi*a-Pi*x+2*Pi*a*k-2*Pi*x*k)/(-2*b+2*a),x));
                                                  (1 + 2 k̃) π (ã − x)
                                              −
                                                      2 (−b̃ + ã)
Òàêèì îáðàçîì, ñîáñòâåííûå çíà÷åíèÿ çàäà÷è áóäóò

                                            (2k + 1)2 π 2
                                     λk =                 , k = 1, 2, 3, . . . ,
                                             4(b − a)2
à ñîáñòâåííûå ôóíêöèè 
                                              (2k + 1)π(a − x)
                              yk (x) = sin(                    ), k = 1, 2, 3, . . . .
                                                  2(b − a)
Ðàññìîòðèì ñëó÷àé λ = 0 :
> lambda:=0;eq;
                                                       λ := 0

                                                          13