ВУЗ:
Составители:
Рубрика:
∆ := cos(
√
λ˜a −
√
λ
˜
b)
λ :=
π
2
(1 + 2 Z1 ˜)
2
4 (−
˜
b + ˜a)
2
λ :=
π
2
(1 + 2 k)
2
4 (−
˜
b + ˜a)
2
C1 sin
√
4
s
π
2
(1 + 2
˜
k)
2
(−
˜
b + ˜a)
2
x
4
+ C2 cos
√
4
s
π
2
(1 + 2
˜
k)
2
(−
˜
b + ˜a)
2
x
4
C1 :=
C2 cos(
π (1+2
˜
k) ˜a
2 (−
˜
b+˜a)
)
sin(
π (1+2
˜
k) ˜a
2 (−
˜
b+˜a)
)
C2 sin(
π ˜a−π x+2 π ˜a
˜
k−2 π x
˜
k
−2
˜
b+2 ˜a
)
sin(
π ˜a+2 π ˜a
˜
k
−2
˜
b+2 ˜a
)
Yn := (x,
˜
k) → sin(
π ˜a −π x + 2 π ˜a
˜
k −2 π x
˜
k
−2
˜
b + 2 ˜a
)
Ïðèðàâíèâàåì íóëþ ýòîò îïðåäåëèòåëü è ðåøàåì ïîëó÷åííîå õàðàêòåðè- ñòè÷åñêîå óðàâíåíèå: >Delta:=select(has,Delta,[cos]); √ √ ∆ := cos( λã − λb̃) >_EnvAllSolutions:=true:lambda:=solve(Delta,lambda); π 2 (1 + 2 _Z1 ˜)2 λ := 4 (−b̃ + ã)2 >lambda:=subs(_Z1='k',lambda); π 2 (1 + 2 k)2 λ := 4 (−b̃ + ã)2 Íàõîäèì ñîáñòâåííûå ôóíêöèè: >assume(k,posint):y(x); s s √ π 2 (1 + 2 k̃)2 √ π 2 (1 + 2 k̃)2 4 x 4 x (−b̃ + ã)2 (−b̃ + ã)2 _C1 sin + _C2 cos 4 4 >C1:=solve(eq1,_C1); _C2 cos( π2(1+2 k̃) ã (−b̃+ã) ) C1 := sin( π2(1+2 k̃) ã (−b̃+ã) ) >simplify(subs(_C1=C1,y(x))):combine(%); _C2 sin( π ã−π x+2 π ã k̃−2 π x k̃ −2 b̃+2 ã ) sin( π−2 ã+2 π ã k̃ b̃+2 ã ) >Yn:=unapply(select(has,%,[x]),x,k); π ã − π x + 2 π ã k̃ − 2 π x k̃ Yn := (x, k̃) → sin( ) −2 b̃ + 2 ã Ïðîâåðèì äèôôåðåíöèàëüíîå óðàâíåíèå: 12