Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 50 стр.

UptoLike

Рубрика: 

p(x) =
(3/2x)
x
q(x) =
(1/2x/2)
x
2
x
0
= 0
p(x) q(x)
p
0
= lim
x0
x
(3/2 x)
x
= 3/2, q
0
= lim
x0
x
2
(1/2 x/2)
x
2
= 1/2.
r(r 1) + 3/2r 1/2 = 0,
r
1
= 1/2 r
2
= 1 r
1
r
2
3/2,
y
1
y
2
y
1
=
X
k=0
c
(1)
k
x
k+1/2
, y
2
=
X
k=0
c
(2)
k
x
k1
.
y
1
2x
2
X
k=0
c
(1)
k
(k + 1/2)(k 1/2)x
k3/2
+ 3x
X
k=0
c
(1)
k
(k + 1/2)x
k1/2
2x
2
X
k=0
c
(1)
k
(k + 1/2)x
k1/2
x
X
k=0
c
(1)
k
x
k+1/2
X
k=0
c
(1)
k
x
k+1/2
= 0.
c
(1)
k
x
1/2
0 0, c
(1)
0
x
3/2
2c
(1)
1
3
2
·
1
2
+ 3c
(1)
1
3
2
2c
(1)
0
1
2
c
(1)
0
c
(1)
1
= 0;
x
5/2
2c
(1)
2
5
2
·
3
2
+ 3c
(1)
2
5
2
2c
(1)
1
3
2
c
(1)
1
c
(1)
2
= 0;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x
k+1/2
c
(1)
k
(k + 1/2)(k 1/2) + 3c
(1)
k
(k + 1/2) 2c
(1)
k1
(k 1/2)
c
(1)
k1
c
(1)
k
= 0.
c
(1)
1
=
2
5
c
(1)
0
, c
(1)
2
=
2
7
c
(1)
1
=
2
2
5 · 7
c
(1)
0
, . . . , c
(1)
k
=
2c
(1)
k1
2k + 3
=
2
k
c
(1)
0
5 · 7 · . . . · (2k + 3)
.
                                                                   50


                                     (3/2−x)                   (−1/2−x/2)
Êîýôôèöèåíòû p(x) =                     x
                                               è q(x) =            x2
                                                                                èìåþò îñîáåííîñòü â òî÷êå x0 = 0,
ñëåäîâàòåëüíî, p(x) è q(x) ðàçëàãàþòñÿ â ðÿä (4.14). Ïî òåîðåìå (2) èìååòñÿ õîòÿ áû îäíî
ðåøåíèå â âèäå îáîáùåííîãî ñòåïåííîãî ðÿäà.
  Ïî ôîðìóëå (4.17)
                                    (3/2 − x)                                    (−1/2 − x/2)
             p0 = lim x                       = 3/2,           q0 = lim x2                    = −1/2.
                        x→0             x                                x→0          x2
Ñîñòàâèì îïðåäåëÿþùåå óðàâíåíèå (4.16):

                                               r(r − 1) + 3/2r − 1/2 = 0,

îòêóäà r1 = 1/2 è r2 = −1. Ðàçíîñòü r1 è r2 ðàâíà 3/2, íå ÿâëÿåòñÿ öåëûì ÷èñëîì,
ñëåäîâàòåëüíî, èç óòâåðæäåíèÿ (1) ïîëó÷àåòñÿ, ÷òî èìåþòñÿ äâà ëèíåéíî íåçàâèñèìûõ
ðåøåíèÿ y1 è y2 â âèäå îáîáùåííûõ ñòåïåííûõ ðÿäîâ:
                                               ∞
                                               X                                ∞
                                                                                X
                                                      (1)                              (2)
                                      y1 =           ck xk+1/2 ,        y2 =          ck xk−1 .                             (4.23)
                                               k=0                              k=0

  Ïîäñòàâëÿåì y1 â óðàâíåíèå (4.21):
                    ∞
                    X                                                           ∞
                                                                                X
                              (1)                                                        (1)
             2x2          ck (k + 1/2)(k − 1/2)xk−3/2 + 3x                              ck (k + 1/2)xk−1/2 −
                    k=0                                                          k=0

                        ∞
                        X                                          ∞
                                                                   X                         ∞
                                                                                             X
                    2          (1)                    k−1/2               (1)                        (1)
            −2x               ck (k       + 1/2)x             −x         ck xk+1/2      −            ck xk+1/2 = 0.
                        k=0                                        k=0                         k=0
                                                     (1)
Ïîëó÷àåì ñèñòåìó óðàâíåíèé íà ck :
                                               (1)
          ïðè x1/2 : 0 ≡ 0, ò.å c0 - ïðîèçâîëüíîå;
                       (1) 3 1     (1) 3     (1) 1    (1)  (1)
          ïðè x3/2 : 2c1     · + 3c1     − 2c0     − c0 − c1 = 0;
                           2 2         2         2
                       (1) 5  3    (1) 5     (1) 3    (1)  (1)
          ïðè x5/2 : 2c2     · + 3c2     − 2c1     − c1 − c2 = 0;
                           2 2         2         2
          .....................................................................
                                    (1)                                   (1)                          (1)
          ïðè xk+1/2 :              ck (k + 1/2)(k − 1/2) + 3ck (k + 1/2) − 2ck−1 (k − 1/2)−
              (1)         (1)
           − ck−1 − ck = 0.



Òîãäà êîýôôèöèåíòû èìåþò âèä
                                                                                         (1)                  (1)
       (1) 2 (1)           (1) 2 (1)  22 (1)                              (1)         2ck−1             2k c0
      c1 = c0 ,           c2 = c1 =      c ,...,                         ck =                =                          .
           5                   7     5·7 0                                            2k + 3   5 · 7 · . . . · (2k + 3)