Химическая кинетика. Наумов А.В. - 11 стр.

UptoLike

Составители: 

Рубрика: 

ɧɟɧɬɨɜ. ɉɨɷɬɨɦɭ ɫɤɨɪɨɫɬɶ ɜ ɤɚɠɞɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ ɞɨɥɠɧɚ ɛɵɬɶ ɜɵɱɢɫ-
ɥɟɧɚ ɤɚɤ ɪɚɡɧɨɫɬɶ
1
i
i
C
Q
{ vv
v
j
ɫɤɨɪɨɫɬɟɣ ɩɪɹɦɨɝɨ ɢ ɨɛɪɚɬɧɨɝɨ ɩɪɟɜɪɚɳɟɧɢɣ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɪɚɡɞɟ-
ɥɢɬɶ ɞɜɚ ɷɬɢɯ ɜɫɬɪɟɱɧɵɯ ɩɨɬɨɤɚ ɧɟɜɨɡɦɨɠɧɨ, ɨɞɧɚɤɨ ɞɥɹ v
+
ɢ v
ɦɨɠɧɨ ɡɚ-
ɩɢɫɚɬɶ ɭɪɚɜɧɟɧɢɹ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ:
11
() () ()
j
i
mn
i
ij
CC
Q
Q

W W Wvk k . (I.17)
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɫɨ ɜɫɟɣ ɨɩɪɟɞɟɥɟɧɧɨɫɬɶɸ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɟɫɥɢ ɤɨɧɫɬɚɧɬɚ
ɫɤɨɪɨɫɬɢ ɨɛɪɚɬɧɨɣ ɪɟɚɤɰɢɢ k
z 0, ɬɨ ɜɫɬɪɟɱɧɨɟ ɩɪɟɜɪɚɳɟɧɢɟ ɞɨɥɠɧɨ ɫɭ-
ɳɟɫɬɜɨɜɚɬɶ. Ɉɧɨ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɤɪɚɣɧɟ ɧɟɡɧɚɱɢɬɟɥɶɧɨɣ ɫɬɟɩɟɧɢ ɢɥɢ
ɧɚɨɛɨɪɨɬɛɵɬɶ ɜɟɫɶɦɚ ɫɭɳɟɫɬɜɟɧɧɵɦ. ɗɬɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɬɨɥɶɤɨ ɫɨɨɬɧɨ-
ɲɟɧɢɟɦ ɤɨɧɫɬɚɧɬ. ȿɫɥɢ k
" k
+
, ɬɨ ɝɨɜɨɪɹɬ, ɱɬɨ ɪɟɚɤɰɢɹ ɹɜɥɹɟɬɫɹ ɩɪɚɤɬɢ-
ɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɨɣ. Ɉɬɦɟɬɢɦ, ɱɬɨ ɤɨɧɫɬɚɧɬɵ k
+
ɢ k
ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɜ ɤɢ-
ɧɟɬɢɱɟɫɤɨɦ ɨɬɧɨɲɟɧɢɢ ɪɚɡɧɵɟ ɩɪɨɰɟɫɫɵ ɢ ɩɨɷɬɨɦɭ ɧɟɡɚɜɢɫɢɦɵ.
ɍɪɚɜɧɟɧɢɟ (I.17) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ
ɭɪɚɜɧɟɧɢɟ, ɩɨɞɨɛɧɨɟ ɬɟɦ, ɤɚɤɢɟ ɦɵ ɪɟɲɚɥɢ ɜ ɩɩ. 5, 6. ɉɨɥɭɱɢɦ ɟɝɨ ɪɟɲɟ-
ɧɢɟ ɞɥɹ ɫɚɦɨɣ ɩɪɨɫɬɨɣ ɪɟɚɤɰɢɢ, ɢɞɭɳɟɣ ɩɨ ɩɟɪɜɨɦɭ ɩɨɪɹɞɤɭ ɜ ɨɛɨɢɯ ɧɚ-
ɩɪɚɜɥɟɧɢɹɯ:
A
ĺ
ĸ
B.
(I.18)
ɍɪɚɜɧɟɧɢɟ (I.17) ɩɪɢɨɛɪɟɬɚɟɬ ɜɢɞ:
A
AB
CC

kkC
)
ɢɥɢ, ɩɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɨɣ ɫɜɹɡɢ ɦɟɠɞɭ C
A
ɢ C
B
,
00
() (
A
AA
CCC

kk k
B
C .
ɂɧɬɟɝɪɢɪɨɜɚɧɢɟ ɟɝɨ ɜ ɤɨɧɟɱɧɨɦ ɫɱɟɬɟ ɞɚɟɬ ɤɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ
00 00
(
AB AB
A
CC CC
Ce

 
)


kk
kk kk
kk
W
(I.19)
ɞɥɹ ɤɨɧɰɟɧɬɪɚɰɢɢ
A, ɢ
00 00
()
AB AB
B
CC CC
Ce

 
W


kk
kk kk
kk
ɞɥɹ ɤɨɧɰɟɧɬɪɚɰɢɢ
B.
ɗɬɨɬ ɜɵɜɨɞ ɢɧɬɟɪɟɫɟɧ ɬɟɦ, ɱɬɨ ɩɪɢ
W ĺ f ɨɛɟ ɮɭɧɤɰɢɢ C
A
(W) ɢ C
B
(W)
ɢɦɟɸɬ ɤɨɧɟɱɧɵɟ ɩɪɟɞɟɥɵ:
00
lim [ ]
AB
A
CC
CA

Wf
{
kk
k
'
,
00
lim [ ]
AB
B
CC
CB

Wf
{
kk
k
'
,
21
ɤɨɬɨɪɵɟ ɦɵ ɛɭɞɟɦ ɨɛɨɡɧɚɱɚɬɶ ɫɩɟɰɢɚɥɶɧɵɦɢ ɫɢɦɜɨɥɚɦɢ [A], [B]. Ɍɚɤɢɦ
ɨɛɪɚɡɨɦ, ɜ ɫɢɫɬɟɦɟ ɫ ɨɛɪɚɬɢɦɨɣ ɪɟɚɤɰɢɟɣ ɜɫɟɝɞɚ ɨɫɬɚɸɬɫɹ ɨɩɪɟɞɟɥɟɧɧɵɟ
ɤɨɥɢɱɟɫɬɜɚ ɢ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɢ ɩɪɨɞɭɤɬɚ.
10. ɏɢɦɢɱɟɫɤɨɟ ɪɚɜɧɨɜɟɫɢɟ
Ɂɚɞɚɱɚ, ɪɟɲɟɧɧɚɹ ɜ ɩɪɟɞɵɞɭɳɟɦ ɩɭɧɤɬɟ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɫɢɫɬɟɦɚ ɫ ɨɛ-
ɪɚɬɢɦɨɣ ɪɟɚɤɰɢɟɣ ɩɪɢɯɨɞɢɬ ɜ ɫɨɫɬɨɹɧɢɟ, ɜ ɤɨɬɨɪɨɦ ɨɛɳɚɹ ɫɤɨɪɨɫɬɶ ɪɟɚɤ-
ɰɢɢ
v = 0 ɩɪɢ ɨɬɥɢɱɧɵɯ ɨɬ ɧɭɥɹ ɫɤɨɪɨɫɬɹɯ ɩɪɹɦɨɝɨ ɢ ɨɛɪɚɬɧɨɝɨ ɩɪɟɜɪɚɳɟ-
ɧɢɣ. ȼ ɫɚɦɨɦ ɞɟɥɟ, ɤɨɥɶ ɫɤɨɪɨ ɧɢ ɨɞɧɨ ɢɡ ɜɟɳɟɫɬɜ ɧɟ ɢɫɱɟɡɚɟɬ,
lim [ ]
A

Wf
vk
'
ɢ . ȼ ɬɨ ɠɟ ɫɚɦɨɟ ɜɪɟɦɹ, ɤɚɤ ɫɥɟɞɭɟɬ ɢɡ ɪɟ-
ɲɟɧɢɹ (I.19),
li .
lim [ ]B

Wf
vk
'
m0
A
C
Wf
'
ȼ ɨɛɳɟɦ ɜɢɞɟ ɞɥɹ ɨɛɪɚɬɢɦɨɣ ɪɟɚɤɰɢɢ
m-ɝɨ ɩɨɪɹɞɤɚ ɜ ɩɪɹɦɨɦ ɧɚɩɪɚɜ-
ɥɟɧɢɢ ɢ
n-ɝɨɜ ɨɛɪɚɬɧɨɦ ɫɭɳɟɫɬɜɭɟɬ ɫɨɫɬɨɹɧɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ
v = 0, v
+
, v
z 0. (I.20)
ɗɬɨ ɫɨɫɬɨɹɧɢɟ ɧɚɡɵɜɚɟɬɫɹ
ɞɢɧɚɦɢɱɟɫɤɢɦ ɯɢɦɢɱɟɫɤɢɦ ɪɚɜɧɨɜɟɫɢɟɦ, ɚɭɫɥɨ-
ɜɢɟ (I.20) –
ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɫɥɨɜɢɟɦ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. ɋɥɨɜɨ «ɞɢ-
ɧɚɦɢɱɟɫɤɨɟ» ɨɡɧɚɱɚɟɬ, ɱɬɨ ɜ ɫɨɫɬɨɹɧɢɢ ɪɚɜɧɨɜɟɫɢɹ ɜɫɟɝɞɚ, ɢ ɫ ɪɚɜɧɵɦɢ
ɫɤɨɪɨɫɬɹɦɢ, ɫɭɳɟɫɬɜɭɸɬ ɜɫɬɪɟɱɧɵɟ ɩɨɬɨɤɢ: ɩɪɹɦɨɣ «
» ɢ ɨɛɪɚɬɧɵɣ «–».
Ʉɨɧɰɟɧɬɪɚɰɢɢ ɜɟɳɟɫɬɜ, ɭɫɬɚɧɨɜɢɜɲɢɟɫɹ ɜ ɯɢɦɢɱɟɫɤɨɦ ɪɚɜɧɨɜɟɫɢɢ, ɧɚɡɵ-
ɜɚɸɬɫɹ
ɪɚɜɧɨɜɟɫɧɵɦɢ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɢ ɨɛɨɡɧɚɱɚɸɬɫɹ [A
i
], [BB
j
].
ɉɪɢɦɟɧɢɦ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɞɥɹ ɫɨɫɬɨɹɧɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨ-
ɜɟɫɢɹ. ɉɨɫɤɨɥɶɤɭ ɜɟɳɟɫɬɜɚ ɫɨɞɟɪɠɚɬɫɹ ɜ ɫɜɨɢɯ ɪɚɜɧɨɜɟɫɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢ-
ɹɯ, ɫɨɝɥɚɫɧɨ ɭɫɥɨɜɢɸ (I.20)
11
[] [ ] 0
j
i
mn
ij
ij
AB
Q
Q

kk . (I.21)
Ɉɛɚ ɱɥɟɧɚ ɫɥɟɜɚ, ɜ ɨɬɥɢɱɢɟ ɨɬ (I.17), ɧɟ ɡɚɜɢɫɹɬ ɨɬ ɜɪɟɦɟɧɢ, ɢ ɨɛɚ ɱɥɟɧɚ (ɟɫɥɢ
k
+
ɢ k
ɤɨɧɟɱɧɵ) ɧɟ ɪɚɜɧɵ ɧɭɥɸ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɭɪɚɜɧɟɧɢɟ (I.21) ɢɦɟɥɨ
ɛɵ ɬɪɢɜɢɚɥɶɧɨɟ ɪɟɲɟɧɢɟ: [
A
i
] = 0 ɢ [BB
j
] = 0 ɨɞɧɨɜɪɟɦɟɧɧɨ. Ɍɟɦ ɫɚɦɵɦ, ɫɨ-
ɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ ɦɨɠɧɨ ɨɯɚɪɚɤɬɟɪɢɡɨɜɚɬɶ ɬɚɤ, ɱɬɨ ɜ ɧɟɦ ɨɞɧɨɜɪɟɦɟɧɧɨ
ɩɪɢɫɭɬɫɬɜɭɸɬ, ɜ ɤɨɧɟɱɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɜɫɟ ɭɱɚɫɬɧɢɤɢ ɪɟ-
ɚɤɰɢɢ. ɇɚɛɥɸɞɚɬɟɥɶ, ɢɡɦɟɪɹɸɳɢɣ ɜ ɪɚɡɧɵɟ ɦɨɦɟɧɬɵ ɜɪɟɦɟɧɢ ɢɯ ɤɨɧɰɟɧɬɪɚ-
ɰɢɢ, ɧɟ ɨɛɧɚɪɭɠɢɬ ɧɢɤɚɤɢɯ ɢɡɦɟɧɟɧɢɣ ɢ ɭɫɬɚɧɨɜɢɬ, ɱɬɨ
ɫɨɫɭɳɟɫɬɜɭɸɬ
0
i
C
.
ɍɪɚɜɧɟɧɢɟ (I.21) ɩɨɥɟɡɧɨ ɩɪɟɨɛɪɚɡɨɜɚɬɶ ɬɚɤ, ɱɬɨɛɵ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦ-
ɩɨɧɟɧɬɨɜ ɨɫɬɚɜɚɥɢɫɶ ɜ ɨɞɧɨɣ ɱɚɫɬɢ:
1
1
[]
.
[]
j
i
n
j
j
m
i
i
B
K
A
Q
Q
{
k
k
(I.22)
22
ɧɟɧɬɨɜ. ɉɨɷɬɨɦɭ ɫɤɨɪɨɫɬɶ ɜ ɤɚɠɞɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ ɞɨɥɠɧɚ ɛɵɬɶ ɜɵɱɢɫ-                                 ɤɨɬɨɪɵɟ ɦɵ ɛɭɞɟɦ ɨɛɨɡɧɚɱɚɬɶ ɫɩɟɰɢɚɥɶɧɵɦɢ ɫɢɦɜɨɥɚɦɢ [A], [B]. Ɍɚɤɢɦ
ɥɟɧɚ ɤɚɤ ɪɚɡɧɨɫɬɶ                                                                                   ɨɛɪɚɡɨɦ, ɜ ɫɢɫɬɟɦɟ ɫ ɨɛɪɚɬɢɦɨɣ ɪɟɚɤɰɢɟɣ ɜɫɟɝɞɚ ɨɫɬɚɸɬɫɹ ɨɩɪɟɞɟɥɟɧɧɵɟ
                                 1                                                                 ɤɨɥɢɱɟɫɬɜɚ ɢ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɢ ɩɪɨɞɭɤɬɚ.
                                 v{              Ci    v  v
                                  Qi
                                                                                                                               10. ɏɢɦɢɱɟɫɤɨɟ ɪɚɜɧɨɜɟɫɢɟ
ɫɤɨɪɨɫɬɟɣ ɩɪɹɦɨɝɨ ɢ ɨɛɪɚɬɧɨɝɨ ɩɪɟɜɪɚɳɟɧɢɣ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɪɚɡɞɟ-
ɥɢɬɶ ɞɜɚ ɷɬɢɯ ɜɫɬɪɟɱɧɵɯ ɩɨɬɨɤɚ ɧɟɜɨɡɦɨɠɧɨ, ɨɞɧɚɤɨ ɞɥɹ v+ ɢ v– ɦɨɠɧɨ ɡɚ-                                Ɂɚɞɚɱɚ, ɪɟɲɟɧɧɚɹ ɜ ɩɪɟɞɵɞɭɳɟɦ ɩɭɧɤɬɟ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɫɢɫɬɟɦɚ ɫ ɨɛ-
ɩɢɫɚɬɶ ɭɪɚɜɧɟɧɢɹ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ:                                                                  ɪɚɬɢɦɨɣ ɪɟɚɤɰɢɟɣ ɩɪɢɯɨɞɢɬ ɜ ɫɨɫɬɨɹɧɢɟ, ɜ ɤɨɬɨɪɨɦ ɨɛɳɚɹ ɫɤɨɪɨɫɬɶ ɪɟɚɤ-
                                       m                      n
                        v(W) k – CiQi (W)  k – C j j (W) .
                                                                        Q
                                                                                           (I.17)   ɰɢɢ v = 0 ɩɪɢ ɨɬɥɢɱɧɵɯ ɨɬ ɧɭɥɹ ɫɤɨɪɨɫɬɹɯ ɩɪɹɦɨɝɨ ɢ ɨɛɪɚɬɧɨɝɨ ɩɪɟɜɪɚɳɟ-
                                       i 1                    j 1                                   ɧɢɣ. ȼ ɫɚɦɨɦ ɞɟɥɟ, ɤɨɥɶ ɫɤɨɪɨ ɧɢ ɨɞɧɨ ɢɡ ɜɟɳɟɫɬɜ ɧɟ ɢɫɱɟɡɚɟɬ,
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɫɨ ɜɫɟɣ ɨɩɪɟɞɟɥɟɧɧɨɫɬɶɸ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɟɫɥɢ ɤɨɧɫɬɚɧɬɚ                                lim v k [ A] ɢ lim v k [ B ] . ȼ ɬɨ ɠɟ ɫɚɦɨɟ ɜɪɟɦɹ, ɤɚɤ ɫɥɟɞɭɟɬ ɢɡ ɪɟ-
                                                                                                    W'f                  W'f
ɫɤɨɪɨɫɬɢ ɨɛɪɚɬɧɨɣ ɪɟɚɤɰɢɢ k– z 0, ɬɨ ɜɫɬɪɟɱɧɨɟ ɩɪɟɜɪɚɳɟɧɢɟ ɞɨɥɠɧɨ ɫɭ-
ɳɟɫɬɜɨɜɚɬɶ. Ɉɧɨ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɤɪɚɣɧɟ ɧɟɡɧɚɱɢɬɟɥɶɧɨɣ ɫɬɟɩɟɧɢ ɢɥɢ                               ɲɟɧɢɹ (I.19), lim C A     0.
                                                                                                                   W'f
ɧɚɨɛɨɪɨɬ – ɛɵɬɶ ɜɟɫɶɦɚ ɫɭɳɟɫɬɜɟɧɧɵɦ. ɗɬɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɬɨɥɶɤɨ ɫɨɨɬɧɨ-                                    ȼ ɨɛɳɟɦ ɜɢɞɟ ɞɥɹ ɨɛɪɚɬɢɦɨɣ ɪɟɚɤɰɢɢ m-ɝɨ ɩɨɪɹɞɤɚ ɜ ɩɪɹɦɨɦ ɧɚɩɪɚɜ-
ɲɟɧɢɟɦ ɤɨɧɫɬɚɧɬ. ȿɫɥɢ k– " k+, ɬɨ ɝɨɜɨɪɹɬ, ɱɬɨ ɪɟɚɤɰɢɹ ɹɜɥɹɟɬɫɹ ɩɪɚɤɬɢ-                             ɥɟɧɢɢ ɢ n-ɝɨ – ɜ ɨɛɪɚɬɧɨɦ ɫɭɳɟɫɬɜɭɟɬ ɫɨɫɬɨɹɧɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ
ɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɨɣ. Ɉɬɦɟɬɢɦ, ɱɬɨ ɤɨɧɫɬɚɧɬɵ k+ ɢ k– ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɜ ɤɢ-                                                           v = 0, v+, v– z 0.                  (I.20)
ɧɟɬɢɱɟɫɤɨɦ ɨɬɧɨɲɟɧɢɢ ɪɚɡɧɵɟ ɩɪɨɰɟɫɫɵ ɢ ɩɨɷɬɨɦɭ ɧɟɡɚɜɢɫɢɦɵ.                                          ɗɬɨ ɫɨɫɬɨɹɧɢɟ ɧɚɡɵɜɚɟɬɫɹ ɞɢɧɚɦɢɱɟɫɤɢɦ ɯɢɦɢɱɟɫɤɢɦ ɪɚɜɧɨɜɟɫɢɟɦ, ɚ ɭɫɥɨ-
   ɍɪɚɜɧɟɧɢɟ (I.17) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ                                ɜɢɟ (I.20) – ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɫɥɨɜɢɟɦ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. ɋɥɨɜɨ «ɞɢ-
ɭɪɚɜɧɟɧɢɟ, ɩɨɞɨɛɧɨɟ ɬɟɦ, ɤɚɤɢɟ ɦɵ ɪɟɲɚɥɢ ɜ ɩɩ. 5, 6. ɉɨɥɭɱɢɦ ɟɝɨ ɪɟɲɟ-                              ɧɚɦɢɱɟɫɤɨɟ» ɨɡɧɚɱɚɟɬ, ɱɬɨ ɜ ɫɨɫɬɨɹɧɢɢ ɪɚɜɧɨɜɟɫɢɹ ɜɫɟɝɞɚ, ɢ ɫ ɪɚɜɧɵɦɢ
ɧɢɟ ɞɥɹ ɫɚɦɨɣ ɩɪɨɫɬɨɣ ɪɟɚɤɰɢɢ, ɢɞɭɳɟɣ ɩɨ ɩɟɪɜɨɦɭ ɩɨɪɹɞɤɭ ɜ ɨɛɨɢɯ ɧɚ-                                ɫɤɨɪɨɫɬɹɦɢ, ɫɭɳɟɫɬɜɭɸɬ ɜɫɬɪɟɱɧɵɟ ɩɨɬɨɤɢ: ɩɪɹɦɨɣ «» ɢ ɨɛɪɚɬɧɵɣ «–».
ɩɪɚɜɥɟɧɢɹɯ:                                                                                         Ʉɨɧɰɟɧɬɪɚɰɢɢ ɜɟɳɟɫɬɜ, ɭɫɬɚɧɨɜɢɜɲɢɟɫɹ ɜ ɯɢɦɢɱɟɫɤɨɦ ɪɚɜɧɨɜɟɫɢɢ, ɧɚɡɵ-
                                  Aĺĸ B.                           (I.18)                           ɜɚɸɬɫɹ ɪɚɜɧɨɜɟɫɧɵɦɢ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɢ ɨɛɨɡɧɚɱɚɸɬɫɹ [Ai], [Bj].            B




ɍɪɚɜɧɟɧɢɟ (I.17) ɩɪɢɨɛɪɟɬɚɟɬ ɜɢɞ:                                                                       ɉɪɢɦɟɧɢɦ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɞɥɹ ɫɨɫɬɨɹɧɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨ-
                                  C A          kC A  kCB                                       ɜɟɫɢɹ. ɉɨɫɤɨɥɶɤɭ ɜɟɳɟɫɬɜɚ ɫɨɞɟɪɠɚɬɫɹ ɜ ɫɜɨɢɯ ɪɚɜɧɨɜɟɫɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢ-
ɢɥɢ, ɩɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɨɣ ɫɜɹɡɢ ɦɟɠɞɭ CA ɢ CB,                                       ɹɯ, ɫɨɝɥɚɫɧɨ ɭɫɥɨɜɢɸ (I.20)
                                                                                                                                    m                     n
                    C A (k  k )C A  k (C A0  CB0 ) .
                                                                                                                                                                  Qj
                                                                                                                                k – [ Ai ]Qi  k – [ B j ]            0.       (I.21)
                                                                                                                                    i 1                   j 1
ɂɧɬɟɝɪɢɪɨɜɚɧɢɟ ɟɝɨ ɜ ɤɨɧɟɱɧɨɦ ɫɱɟɬɟ ɞɚɟɬ ɤɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ
                             0    0         0      0
                                                                                                    Ɉɛɚ ɱɥɟɧɚ ɫɥɟɜɚ, ɜ ɨɬɥɢɱɢɟ ɨɬ (I.17), ɧɟ ɡɚɜɢɫɹɬ ɨɬ ɜɪɟɦɟɧɢ, ɢ ɨɛɚ ɱɥɟɧɚ (ɟɫɥɢ
                           C A  CB       C A  CB  ( k k ) W                                   k+ ɢ k– ɤɨɧɟɱɧɵ) ɧɟ ɪɚɜɧɵ ɧɭɥɸ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɭɪɚɜɧɟɧɢɟ (I.21) ɢɦɟɥɨ
                    CA     k                     k               e                      (I.19)
                                 k  k                k  k                                     ɛɵ ɬɪɢɜɢɚɥɶɧɨɟ ɪɟɲɟɧɢɟ: [Ai] = 0 ɢ [Bj] = 0 ɨɞɧɨɜɪɟɦɟɧɧɨ. Ɍɟɦ ɫɚɦɵɦ, ɫɨ-
                                                                                                                                                     B




ɞɥɹ ɤɨɧɰɟɧɬɪɚɰɢɢ A, ɢ                                                                               ɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ ɦɨɠɧɨ ɨɯɚɪɚɤɬɟɪɢɡɨɜɚɬɶ ɬɚɤ, ɱɬɨ ɜ ɧɟɦ ɨɞɧɨɜɪɟɦɟɧɧɨ
                                   0         0            0         0                               ɩɪɢɫɭɬɫɬɜɭɸɬ, ɫɨɫɭɳɟɫɬɜɭɸɬ ɜ ɤɨɧɟɱɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɜɫɟ ɭɱɚɫɬɧɢɤɢ ɪɟ-
                                 C A  CB               C A  CB
                     CB     k                    k                   e  ( k k ) W            ɚɤɰɢɢ. ɇɚɛɥɸɞɚɬɟɥɶ, ɢɡɦɟɪɹɸɳɢɣ ɜ ɪɚɡɧɵɟ ɦɨɦɟɧɬɵ ɜɪɟɦɟɧɢ ɢɯ ɤɨɧɰɟɧɬɪɚ-
                                 k  k                k  k                                     ɰɢɢ, ɧɟ ɨɛɧɚɪɭɠɢɬ ɧɢɤɚɤɢɯ ɢɡɦɟɧɟɧɢɣ ɢ ɭɫɬɚɧɨɜɢɬ, ɱɬɨ C i 0 .
ɞɥɹ ɤɨɧɰɟɧɬɪɚɰɢɢ B.                                                                                     ɍɪɚɜɧɟɧɢɟ (I.21) ɩɨɥɟɡɧɨ ɩɪɟɨɛɪɚɡɨɜɚɬɶ ɬɚɤ, ɱɬɨɛɵ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦ-
   ɗɬɨɬ ɜɵɜɨɞ ɢɧɬɟɪɟɫɟɧ ɬɟɦ, ɱɬɨ ɩɪɢ W ĺ f ɨɛɟ ɮɭɧɤɰɢɢ CA(W) ɢ CB(W)                                ɩɨɧɟɧɬɨɜ ɨɫɬɚɜɚɥɢɫɶ ɜ ɨɞɧɨɣ ɱɚɫɬɢ:
ɢɦɟɸɬ ɤɨɧɟɱɧɵɟ ɩɪɟɞɟɥɵ:                                                                                                                   n
                                                                                                                                                     Qj
                       0     0                     0     0                                                                                – [Bj ]
                     C  CB
           lim C A k A
                                                 C  CB
                               { [ A] , lim CB k A        { [ B] ,                                                                       j 1                 k
                                                                                                                                                                 { K.            (I.22)
           W'f        k  k           W'f       k  k                                                                                  m
                                                                                                                                                 Qi           k
                                                                                                                                          – [ Ai ]
                                                                                                                                          i 1


                                             21                                                                                                 22