ВУЗ:
Составители:
Рубрика:
ɩɨ ɮɨɪɦɭɥɟ ɬɢɩɚ (I.5), ɛɵɥɚ ɛɵ ɧɟɩɨɦɟɪɧɨ ɜɵɫɨɤɚ. Ⱥɪɪɟɧɢɭɫ ɩɪɟɞɩɨɥɨɠɢɥ,
ɱɬɨ ɪɟɚɤɰɢɨɧɧɵɦɢ ɹɜɥɹɸɬɫɹ ɬɨɥɶɤɨ ɬɟ ɫɬɨɥɤɧɨɜɟɧɢɹ, ɤɨɬɨɪɵɟ ɩɪɨɢɫɯɨɞɹɬ
ɫ ɷɧɟɪɝɢɟɣ, ɩɪɟɜɵɲɚɸɳɟɣ ɧɟɤɨɬɨɪɵɣ ɩɨɪɨɝ E
a
. ȼɫɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɫ ɷɧɟɪ-
ɝɢɟɣ E < E
a
ɨɤɚɡɵɜɚɸɬɫɹ ɧɟɷɮɮɟɤɬɢɜɧɵɦɢ: ɫɨɭɞɚɪɹɸɳɢɟɫɹ «ɦɟɞɥɟɧɧɵɟ»
ɱɚɫɬɢɰɵ ɧɟ ɪɟɚɝɢɪɭɸɬ. ɗɬɨɬ ɩɨɪɨɝ ɢ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ
ɷɧɟɪɝɢɸ ɚɤ-
ɬɢɜɚɰɢɢ
, ɚ ɫɬɨɥɤɧɨɜɟɧɢɹ ɫ ɭɫɥɨɜɢɟɦ E
· E
a
ɧɚɡɵɜɚɸɬ ɚɤɬɢɜɧɵɦɢ.
ɋɬɚɬɢɫɬɢɱɟɫɤɢɣ ɩɨɞɫɱɟɬ ɱɚɫɬɨɬɵ z
a
ɛɢɧɚɪɧɵɯ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ
ɜ ɢɞɟɚɥɶɧɨɦ ɝɚɡɟ, ɨɫɧɨɜɚɧɧɵɣ ɧɚ ɪ ɚ ɫ ɩ ɪ ɟɞɟɥɟɧɢɢ Ɇɚɤɫɜɟɥɥɚ
ɦɨɥɟɤɭɥ ɝɚɡɚ ɩɨ ɫɤɨɪɨɫɬɹɦ, ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ
1
2
22
12 1
8
()
*
a
E
RT
aA
ɤT
rrN e CC
S
SP
z
2
(I.15)
(ɫɦ. ɥɢɬɟɪɚɬɭɪɭ [2, 4, 5]). Ɂɞɟɫɶ r
1
ɢ r
2
– ɪɚɞɢɭɫɵ ɫɬɚɥɤɢɜɚɸɳɢɯɫɹ ɱɚɫɬɢɰ;
P* – ɢɯ ɩɪɢɜɟɞɟɧɧɚɹ ɦɚɫɫɚ:
12
111
*
PPP
,
ɚ ɦɧɨɠɢɬɟɥɶ
V = S(r
1
+ r
2
)
2
ɧɚɡɵɜɚɟɬɫɹ ɫɟɱɟɧɢɟɦ ɫɨɭɞɚɪɟɧɢɹ. Ɉɧɨ ɩɪɟɞɫɬɚɜɥɹ-
ɟɬ ɫɨɛɨɣ ɫɟɱɟɧɢɟ ɰɢɥɢɧɞɪɚ, ɜ ɤɨɬɨɪɨɦ ɞɨɥɠɧɵ ɨɤɚɡɚɬɶɫɹ ɰɟɧɬɪɵ ɦɚɫɫ ɫɮɟɪɢ-
ɱɟɫɤɢɯ ɱɚɫɬɢɰ, ɱɬɨɛɵ ɫɥɭɱɢɥɨɫɶ ɫɨɭɞɚɪɟɧɢɟ. ɂɫɩɨɥɶɡɭɹ ɮɨɪɦɭɥɭ (I.5), ɤɨɬɨ-
ɪɚɹ ɞɥɹ ɱɚɫɬɨɬɵ
ɜɫɟɯ ɞɜɨɣɧɵɯ ɫɨɭɞɚɪɟɧɢɣ ɪɚɡɥɢɱɧɵɯ ɱɚɫɬɢɰ ɢɦɟɟɬ ɜɢɞ
*)
1
2
22
12 1
8
()
*
A
ɤT
rrN CC S
SP
z
2
,
ɩɨɥɭɱɢɦ:
a
E
RT
a
e
zz .
Ɍɟɦ ɫɚɦɵɦ ɦɧɨɠɢɬɟɥɶ e
–E
a
/RT
ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɞɨɥɸ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨ-
ɜɟɧɢɣ ɫ ɷɧɟɪɝɢɟɣ E > E
a
.
Ʉɚɤ ɜɢɞɧɨ, ɩɨɫɥɟɞɧɟɟ ɭɪɚɜɧɟɧɢɟ ɫɨɜɩɚɞɚɟɬ ɩɨ ɮɨɪɦɟ ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪ-
ɪɟɧɢɭɫɚ. Ɉɬɥɢɱɢɟ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ
ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɚ ɡɚɜɢɫɢɦɨɫɬɶ, ɜɩɪɨɱɟɦ, ɨɫɬɚɟɬɫɹ ɫɥɚɛɨɣ, ɩɪɨ-
ɩɨɪɰɢɨɧɚɥɶɧɨɣ T
1/2
, ɱɬɨ ɜ ɧɟɛɨɥɶɲɨɦ ɢɧɬɟɪɜɚɥɟ ɬɟɦɩɟɪɚɬɭɪ ɧɟɫɭɳɟɫɬɜɟɧ-
ɧɨ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɛɵɫɬɪɨɪɚɫɬɭɳɟɣ ɮɭɧɤɰɢɟɣ e
–E
a
/RT
.
ɍɪɚɜɧɟɧɢɟ (I.15) – ɨɫɧɨɜɧɨɟ ɭɪɚɜɧɟɧɢɟ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟ-
ɧɢɣ – ɫɨɞɟɪɠɢɬ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ (ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɶ C
1
C
2
). ȿɫɥɢ
ɭɱɟɫɬɶ, ɱɬɨ ɫɪɟɞɧɹɹ
ɨɬɧɨɫɢɬɟɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɱɚɫɬɢɰ ɢɞɟɚɥɶɧɨɝɨ ɝɚɡɚ
*)
Ɏɨɪɦɭɥɚ (I.5) ɩɨɥɭɱɚɟɬɫɹ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ r
1
= r
2
, P
1
= P
2
ɢ C
1
= C
2
, ɚ ɬɚɤɠɟ ɭɱɟɫɬɶ, ɱɬɨ
ɩɪɢ ɨɬɨɠɞɟɫɬɜɥɟɧɢɢ ɱɚɫɬɢɰ (1 { 2) ɩɨɥɭɱɢɬɫɹ ɭɞɜɨɟɧɧɨɟ ɱɢɫɥɨ ɫɨɭɞɚɪɟɧɢɣ. Ɉɬɫɸɞɚ – ɤɨ-
ɷɮɮɢɰɢɟɧɬ 2 ɜ (I.5).
19
1/2
8
*
ɤT
u
SP
,
ɬɨ ɟɦɭ ɦɨɠɧɨ ɩɪɢɞɚɬɶ ɮɨɪɦɭ
2
12
a
E
RT
aA
uNe CC
Vz .
ɉɪɨɢɡɜɟɞɟɧɢɟ z
0
= uV ɧɚɡɵɜɚɟɬɫɹ ɮɚɤɬɨɪɨɦ ɫɨɭɞɚɪɟɧɢɣ. Ɉɧ ɩɪɟɞɫɬɚɜɥɹɟɬ
ɫɨɛɨɣ ɱɚɫɬɨɬɭ ɜɫɬɪɟɱ ɞɜɭɯ ɞɚɧɧɵɯ ɱɚɫɬɢɰ 1 ɢ 2, ɞɜɢɠɭɳɢɯɫɹ ɜ ɟɞɢɧɢɰɟ
ɨɛɴɟɦɚ.
ɇɚɤɨɧɟɰ, ɧɭɠɧɨ ɩɪɢɧɹɬɶ ɜɨ ɜɧɢɦɚɧɢɟ, ɱɬɨ ɞɚɠɟ ɚɤɬɢɜɧɨɟ ɫɨɭɞɚɪɟɧɢɟ
ɧɟ ɜɫɟɝɞɚ ɪɟɚɤɰɢɨɧɧɨ ɷɮɮɟɤɬɢɜɧɨ. Ⱦɥɹ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɨɥɟɤɭɥ, ɨɛɥɚ-
ɞɚɸɳɢɯ ɧɟɤɨɬɨɪɵɦ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦ ɫɬɪɨɟɧɢɟɦ, ɧɟɨɛɯɨɞɢɦɨ, ɱɬɨɛɵ ɢɯ
ɜɡɚɢɦɧɚɹ ɨɪɢɟɧɬɚɰɢɹ ɜ ɦɨɦɟɧɬ ɫɬɨɥɤɧɨɜɟɧɢɹ (ɢɥɢ, ɤɚɤ ɝɨɜɨɪɹɬ ɤɨɧɮɢɝɭɪɚ-
ɰɢɹ ɫɬɨɥɤɧɨɜɟɧɢɹ) ɛɵɥɚ ɩɨɞɯɨɞɹɳɟɣ. ɉɨɷɬɨɦɭ ɞɥɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ-
ɧɢɦɚɸɬ:
12
a
E
RT
a
ppeC
vz z C , ɢɥɢ
a
E
RT
pe
kz
ɞɥɹ ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ. Ɇɧɨɠɢɬɟɥɶ p, ɩɨɤɚɡɵɜɚɸɳɢɣ ɞɨɥɸ ɷɮɮɟɤɬɢɜɧɵɯ
ɜ ɧɚɡɜɚɧɧɨɦ ɫɦɵɫɥɟ ɫɬɨɥɤɧɨɜɟɧɢɣ, ɧɚɡɵɜɚɟɬɫɹ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦ ɢɥɢ
ɫɬɟɪɢɱɟɫɤɢɦ
*
)
ɮɚɤɬɨɪɨɦ.
9. Ɉɛɪɚɬɢɦɵɟ ɪɟɚɤɰɢɢ
Ⱦɨ ɫɢɯ ɩɨɪ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ ɪɟɚɤɰɢɢ, ɩɪɨɬɟɤɚɸɳɢɟ ɜ ɨɞɧɨɦ ɧɚɩɪɚɜɥɟ-
ɧɢɢ. ɗɬɨ ɹɜɥɹɟɬɫɹ ɩɪɢɛɥɢɠɟɧɢɟɦ ɢ ɨɩɪɚɜɞɚɧɨ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ ɞɥɹ
ɧɚɱɚɥɶɧɨɝɨ ɩɟɪɢɨɞɚ ɩɪɨɰɟɫɫɚ. ɉɭɫɬɶ ɢɦɟɟɬɫɹ ɩɪɨɫɬɚɹ ɪɟɚɤɰɢɹ ɫ ɭɪɚɜɧɟɧɢɟɦ
11
mn
ii j j
ij
A
B
¦Q ¦Q' , (I.16)
ɢ ɩɭɫɬɶ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ ɜ ɫɢɫɬɟɦɟ ɨɬɫɭɬɫɬɜɨɜɚɥɢ ɜɟɳɟɫɬɜɚ B
B
j
.
Ʉɚɤ ɬɨɥɶɤɨ ɜɟɳɟɫɬɜɚ B
j
B ɩɨɹɜɹɬɫɹ ɢ ɫɬɚɧɭɬ ɧɚɤɚɩɥɢɜɚɬɶɫɹ, ɜɨɡɧɢɤɧɟɬ ɢ ɫɬɚ-
ɧɟɬ ɪɚɡɜɢɜɚɬɶɫɹ ɜɫɬɪɟɱɧɵɣ ɩɪɨɰɟɫɫ ɩɪɟɜɪɚɳɟɧɢɹ, ɨɬɜɟɱɚɸɳɢɣ ɬɨɦɭ ɠɟ
ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɨɦɭ ɭɪɚɜɧɟɧɢɸ, ɧɨ ɩɪɨɱɢɬɚɧɧɨɦɭ ɫɩɪɚɜɚ ɧɚɥɟɜɨ. ȼ ɷɬɨɦ
ɫɥɭɱɚɟ ɝɨɜɨɪɹɬ, ɱɬɨ ɪɟɚɤɰɢɹ ɹɜɥɹɟɬɫɹ ɨɛɪɚɬɢɦɨɣ ɢ, ɱɬɨɛɵ ɩɨɞɱɟɪɤɧɭɬɶ ɷɬɨ
ɨɛɫɬɨɹɬɟɥɶɫɬɜɨ, ɩɢɲɭɬ:
11
mn
ii j j
ij
A
B
¦Q ¦Q
'
&
.
ɉɪɢ ɬɚɤɨɦ ɩɨɥɨɠɟɧɢɢ ɞɟɥɚ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɦɵ ɩɨ-ɩɪɟɠɧɟɦɭ ɨɩɪɟɞɟ-
ɥɹɟɦ ɮɨɪɦɭɥɨɣ (I.4) ɢ ɫɥɟɞɢɦ ɡɚ ɪɚɡɜɢɬɢɟɦ ɩɪɨɰɟɫɫɚ ɩɨ ɨɞɧɨɦɭ ɢɡ ɤɨɦɩɨ-
*)
Ɉɬ ɝɪɟɱ. ıIJİȡȩȢ – ɬɜɟɪɞɵɣ, ɜ ɩɟɪɟɧɨɫɧɨɦ ɫɦɵɫɥɟ – ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɣ, ɨɛɴɟɦɧɵɣ.
20
ɩɨ ɮɨɪɦɭɥɟ ɬɢɩɚ (I.5), ɛɵɥɚ ɛɵ ɧɟɩɨɦɟɪɧɨ ɜɵɫɨɤɚ. Ⱥɪɪɟɧɢɭɫ ɩɪɟɞɩɨɥɨɠɢɥ, 8ɤT
1/ 2
ɱɬɨ ɪɟɚɤɰɢɨɧɧɵɦɢ ɹɜɥɹɸɬɫɹ ɬɨɥɶɤɨ ɬɟ ɫɬɨɥɤɧɨɜɟɧɢɹ, ɤɨɬɨɪɵɟ ɩɪɨɢɫɯɨɞɹɬ u ,
ɫ ɷɧɟɪɝɢɟɣ, ɩɪɟɜɵɲɚɸɳɟɣ ɧɟɤɨɬɨɪɵɣ ɩɨɪɨɝ Ea. ȼɫɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɫ ɷɧɟɪ- SP*
ɝɢɟɣ E < Ea ɨɤɚɡɵɜɚɸɬɫɹ ɧɟɷɮɮɟɤɬɢɜɧɵɦɢ: ɫɨɭɞɚɪɹɸɳɢɟɫɹ «ɦɟɞɥɟɧɧɵɟ» ɬɨ ɟɦɭ ɦɨɠɧɨ ɩɪɢɞɚɬɶ ɮɨɪɦɭ
Ea
ɱɚɫɬɢɰɵ ɧɟ ɪɟɚɝɢɪɭɸɬ. ɗɬɨɬ ɩɨɪɨɝ ɢ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɷ ɧ ɟ ɪ ɝ ɢ ɸ ɚ ɤ -
ɬ ɢ ɜ ɚ ɰ ɢ ɢ, ɚ ɫɬɨɥɤɧɨɜɟɧɢɹ ɫ ɭɫɥɨɜɢɟɦ E · Ea ɧɚɡɵɜɚɸɬ ɚɤɬɢɜɧɵɦɢ. za uVN A2 e RT
C1C2 .
ɋɬɚɬɢɫɬɢɱɟɫɤɢɣ ɩɨɞɫɱɟɬ ɱɚɫɬɨɬɵ za ɛɢɧɚɪɧɵɯ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ ɉɪɨɢɡɜɟɞɟɧɢɟ z0 = uV ɧɚɡɵɜɚɟɬɫɹ ɮɚɤɬɨɪɨɦ ɫɨɭɞɚɪɟɧɢɣ. Ɉɧ ɩɪɟɞɫɬɚɜɥɹɟɬ
ɜ ɢɞɟɚɥɶɧɨɦ ɝɚɡɟ, ɨɫɧɨɜɚɧɧɵɣ ɧɚ ɪ ɚ ɫ ɩ ɪ ɟ ɞ ɟ ɥ ɟ ɧ ɢ ɢ Ɇ ɚ ɤ ɫ ɜ ɟ ɥ ɥ ɚ ɫɨɛɨɣ ɱɚɫɬɨɬɭ ɜɫɬɪɟɱ ɞɜɭɯ ɞɚɧɧɵɯ ɱɚɫɬɢɰ 1 ɢ 2, ɞɜɢɠɭɳɢɯɫɹ ɜ ɟɞɢɧɢɰɟ
ɦɨɥɟɤɭɥ ɝɚɡɚ ɩɨ ɫɤɨɪɨɫɬɹɦ, ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɨɛɴɟɦɚ.
1
Ea ɇɚɤɨɧɟɰ, ɧɭɠɧɨ ɩɪɢɧɹɬɶ ɜɨ ɜɧɢɦɚɧɢɟ, ɱɬɨ ɞɚɠɟ ɚɤɬɢɜɧɨɟ ɫɨɭɞɚɪɟɧɢɟ
8ɤT 2
ɧɟ ɜɫɟɝɞɚ ɪɟɚɤɰɢɨɧɧɨ ɷɮɮɟɤɬɢɜɧɨ. Ⱦɥɹ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɨɥɟɤɭɥ, ɨɛɥɚ-
za 2
S(r1 r2 ) N 2
A e RT
C1C2 (I.15)
SP* ɞɚɸɳɢɯ ɧɟɤɨɬɨɪɵɦ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦ ɫɬɪɨɟɧɢɟɦ, ɧɟɨɛɯɨɞɢɦɨ, ɱɬɨɛɵ ɢɯ
(ɫɦ. ɥɢɬɟɪɚɬɭɪɭ [2, 4, 5]). Ɂɞɟɫɶ r1 ɢ r2 – ɪɚɞɢɭɫɵ ɫɬɚɥɤɢɜɚɸɳɢɯɫɹ ɱɚɫɬɢɰ; ɜɡɚɢɦɧɚɹ ɨɪɢɟɧɬɚɰɢɹ ɜ ɦɨɦɟɧɬ ɫɬɨɥɤɧɨɜɟɧɢɹ (ɢɥɢ, ɤɚɤ ɝɨɜɨɪɹɬ ɤɨɧɮɢɝɭɪɚ-
P* – ɢɯ ɩɪɢɜɟɞɟɧɧɚɹ ɦɚɫɫɚ: ɰɢɹ ɫɬɨɥɤɧɨɜɟɧɢɹ) ɛɵɥɚ ɩɨɞɯɨɞɹɳɟɣ. ɉɨɷɬɨɦɭ ɞɥɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ-
ɧɢɦɚɸɬ:
1 1 1 ,
Ea
Ea
P* P 1 P 2 v pza pze RT
C1C2 , ɢɥɢ k pze RT
ɚ ɦɧɨɠɢɬɟɥɶ V = S(r1 + r2)2 ɧɚɡɵɜɚɟɬɫɹ ɫɟɱɟɧɢɟɦ ɫɨɭɞɚɪɟɧɢɹ. Ɉɧɨ ɩɪɟɞɫɬɚɜɥɹ- ɞɥɹ ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ. Ɇɧɨɠɢɬɟɥɶ p, ɩɨɤɚɡɵɜɚɸɳɢɣ ɞɨɥɸ ɷɮɮɟɤɬɢɜɧɵɯ
ɟɬ ɫɨɛɨɣ ɫɟɱɟɧɢɟ ɰɢɥɢɧɞɪɚ, ɜ ɤɨɬɨɪɨɦ ɞɨɥɠɧɵ ɨɤɚɡɚɬɶɫɹ ɰɟɧɬɪɵ ɦɚɫɫ ɫɮɟɪɢ- ɜ ɧɚɡɜɚɧɧɨɦ ɫɦɵɫɥɟ ɫɬɨɥɤɧɨɜɟɧɢɣ, ɧɚɡɵɜɚɟɬɫɹ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦ ɢɥɢ
ɱɟɫɤɢɯ ɱɚɫɬɢɰ, ɱɬɨɛɵ ɫɥɭɱɢɥɨɫɶ ɫɨɭɞɚɪɟɧɢɟ. ɂɫɩɨɥɶɡɭɹ ɮɨɪɦɭɥɭ (I.5), ɤɨɬɨ- ɫɬɟɪɢɱɟɫɤɢɦ * ) ɮɚɤɬɨɪɨɦ.
*)
ɪɚɹ ɞɥɹ ɱɚɫɬɨɬɵ ɜɫɟɯ ɞɜɨɣɧɵɯ ɫɨɭɞɚɪɟɧɢɣ ɪɚɡɥɢɱɧɵɯ ɱɚɫɬɢɰ ɢɦɟɟɬ ɜɢɞ
1
9. Ɉɛɪɚɬɢɦɵɟ ɪɟɚɤɰɢɢ
8ɤT 2
z 2
S(r1 r2 ) N 2
A C1C2 ,
SP* Ⱦɨ ɫɢɯ ɩɨɪ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ ɪɟɚɤɰɢɢ, ɩɪɨɬɟɤɚɸɳɢɟ ɜ ɨɞɧɨɦ ɧɚɩɪɚɜɥɟ-
ɩɨɥɭɱɢɦ: ɧɢɢ. ɗɬɨ ɹɜɥɹɟɬɫɹ ɩɪɢɛɥɢɠɟɧɢɟɦ ɢ ɨɩɪɚɜɞɚɧɨ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ ɞɥɹ
Ea ɧɚɱɚɥɶɧɨɝɨ ɩɟɪɢɨɞɚ ɩɪɨɰɟɫɫɚ. ɉɭɫɬɶ ɢɦɟɟɬɫɹ ɩɪɨɫɬɚɹ ɪɟɚɤɰɢɹ ɫ ɭɪɚɜɧɟɧɢɟɦ
za ze
. RT m n
–Ea/RT ¦ Qi Ai ' ¦ Q j B j , (I.16)
Ɍɟɦ ɫɚɦɵɦ ɦɧɨɠɢɬɟɥɶ e ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɞɨɥɸ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨ- i 1 j 1
ɜɟɧɢɣ ɫ ɷɧɟɪɝɢɟɣ E > Ea. ɢ ɩɭɫɬɶ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ ɜ ɫɢɫɬɟɦɟ ɨɬɫɭɬɫɬɜɨɜɚɥɢ ɜɟɳɟɫɬɜɚ Bj. B
Ʉɚɤ ɜɢɞɧɨ, ɩɨɫɥɟɞɧɟɟ ɭɪɚɜɧɟɧɢɟ ɫɨɜɩɚɞɚɟɬ ɩɨ ɮɨɪɦɟ ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪ- Ʉɚɤ ɬɨɥɶɤɨ ɜɟɳɟɫɬɜɚ Bj ɩɨɹɜɹɬɫɹ ɢ ɫɬɚɧɭɬ ɧɚɤɚɩɥɢɜɚɬɶɫɹ, ɜɨɡɧɢɤɧɟɬ ɢ ɫɬɚ-
B
ɪɟɧɢɭɫɚ. Ɉɬɥɢɱɢɟ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ ɧɟɬ ɪɚɡɜɢɜɚɬɶɫɹ ɜɫɬɪɟɱɧɵɣ ɩɪɨɰɟɫɫ ɩɪɟɜɪɚɳɟɧɢɹ, ɨɬɜɟɱɚɸɳɢɣ ɬɨɦɭ ɠɟ
ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɚ ɡɚɜɢɫɢɦɨɫɬɶ, ɜɩɪɨɱɟɦ, ɨɫɬɚɟɬɫɹ ɫɥɚɛɨɣ, ɩɪɨ- ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɨɦɭ ɭɪɚɜɧɟɧɢɸ, ɧɨ ɩɪɨɱɢɬɚɧɧɨɦɭ ɫɩɪɚɜɚ ɧɚɥɟɜɨ. ȼ ɷɬɨɦ
ɩɨɪɰɢɨɧɚɥɶɧɨɣ T1/2, ɱɬɨ ɜ ɧɟɛɨɥɶɲɨɦ ɢɧɬɟɪɜɚɥɟ ɬɟɦɩɟɪɚɬɭɪ ɧɟɫɭɳɟɫɬɜɟɧ- ɫɥɭɱɚɟ ɝɨɜɨɪɹɬ, ɱɬɨ ɪɟɚɤɰɢɹ ɹɜɥɹɟɬɫɹ ɨɛɪɚɬɢɦɨɣ ɢ, ɱɬɨɛɵ ɩɨɞɱɟɪɤɧɭɬɶ ɷɬɨ
ɧɨ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɛɵɫɬɪɨɪɚɫɬɭɳɟɣ ɮɭɧɤɰɢɟɣ e–Ea/RT. ɨɛɫɬɨɹɬɟɥɶɫɬɜɨ, ɩɢɲɭɬ:
ɍɪɚɜɧɟɧɢɟ (I.15) – ɨɫɧɨɜɧɨɟ ɭɪɚɜɧɟɧɢɟ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟ- m n
ɧɢɣ – ɫɨɞɟɪɠɢɬ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ (ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɶ C1C2). ȿɫɥɢ ' ¦ Q j Bj .
¦ Qi Ai &
i 1 j 1
ɭɱɟɫɬɶ, ɱɬɨ ɫɪɟɞɧɹɹ ɨɬɧɨɫɢɬɟɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɱɚɫɬɢɰ ɢɞɟɚɥɶɧɨɝɨ ɝɚɡɚ
ɉɪɢ ɬɚɤɨɦ ɩɨɥɨɠɟɧɢɢ ɞɟɥɚ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɦɵ ɩɨ-ɩɪɟɠɧɟɦɭ ɨɩɪɟɞɟ-
ɥɹɟɦ ɮɨɪɦɭɥɨɣ (I.4) ɢ ɫɥɟɞɢɦ ɡɚ ɪɚɡɜɢɬɢɟɦ ɩɪɨɰɟɫɫɚ ɩɨ ɨɞɧɨɦɭ ɢɡ ɤɨɦɩɨ-
*)
Ɏɨɪɦɭɥɚ (I.5) ɩɨɥɭɱɚɟɬɫɹ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ r1 = r2, P1 = P2 ɢ C1 = C2, ɚ ɬɚɤɠɟ ɭɱɟɫɬɶ, ɱɬɨ
ɩɪɢ ɨɬɨɠɞɟɫɬɜɥɟɧɢɢ ɱɚɫɬɢɰ (1 { 2) ɩɨɥɭɱɢɬɫɹ ɭɞɜɨɟɧɧɨɟ ɱɢɫɥɨ ɫɨɭɞɚɪɟɧɢɣ. Ɉɬɫɸɞɚ – ɤɨ- *)
ɷɮɮɢɰɢɟɧɬ 2 ɜ (I.5). Ɉɬ ɝɪɟɱ. ıIJİȡȩȢ – ɬɜɟɪɞɵɣ, ɜ ɩɟɪɟɧɨɫɧɨɦ ɫɦɵɫɥɟ – ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɣ, ɨɛɴɟɦɧɵɣ.
19 20
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »
