ВУЗ:
Составители:
Рубрика:
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɢɧɬɟɝɪɢɪɭɟɬɫɹ ɭɠɟ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ, ɩɨɫɤɨɥɶɤɭ ɩɟɪɟɦɟɧ-
ɧɵɟ C
B
ɢ W ɜ ɧɟɦ ɪɚɡɞɟɥɟɧɵ: ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ C
I
|
W = 0
= 0
12
()
0
12
21
00
B
C
BA
dC C e e d
W
W
W W
kk
kk
kk
yy
W
.
ɉɨɫɥɟ ɜɵɱɢɫɥɟɧɢɹ ɢɧɬɟɝɪɚɥɚ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɩɨɥɭɱɚɟɬɫɹ:
1
0
21
21 21
() 1
BA
CC e e
2
W
§·
W
¨¸
©¹
k
kk
kk kk
Wk
. (I.10)
ɉɪɨɚɧɚɥɢɡɢɪɭɟɦ ɩɨɥɭɱɟɧɧɵɟ ɪɟɡɭɥɶɬɚɬɵ. ɇɚɢɛɨɥɟɟ ɢɧɬɟɪɟɫɧɨ ɩɨɜɟɞɟ-
ɧɢɟ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ I, ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɬɨɪɨɝɨ ɧɟɦɨɧɨɬɨɧɧɨ ɢɡ-
ɦɟɧɹɟɬɫɹ ɫɨ ɜɪɟɦɟɧɟɦ. Ɏɭɧɤɰɢɹ (I.9) ɹɜɥɹɟɬɫɹ ɤɨɦɛɢɧɚɰɢɟɣ ɞɜɭɯ ɷɤɫɩɨ-
ɧɟɧɬ ɢ ɢɦɟɟɬ ɦɚɤɫɢɦɭɦ ɜ ɬɨɱɤɟ
max
21
1
ln
K
W
kk
, ɝɞɟ
2
1
K
k
k
ɹɜɥɹɟɬɫɹ ɨɬɧɨɲɟɧɢɟɦ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɨɦɟɠɭɬɨɱɧɨɟ
ɜɟɳɟɫɬɜɨ ɞɨ ɧɟɤɨɬɨɪɨɝɨ ɦɨɦɟɧɬɚ ɧɚɤɚɩɥɢɜɚɟɬɫɹ, ɚ ɞɚɥɟɟ ɢɫɱɟɡɚɟɬ. Ʉɢɧɟɬɢ-
ɱɟɫɤɚɹ ɤɪɢɜɚɹ ɞɥɹ ɧɟɝɨ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ. 1.
ȼɟɳɟɫɬɜɨ B ɜɟɞɟɬ ɫɟɛɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨ ɧɚ ɟɝɨ ɤɢɧɟɬɢɱɟɫɤɨɣ ɤɪɢɜɨɣ
ɢɦɟɟɬɫɹ ɩɟɪɟɝɢɛ, ɫɨɜɩɚɞɚɸɳɢɣ ɩɨ ɜɪɟɦɟɧɢ ɫ ɬɨɱɤɨɣ ɦɚɤɫɢɦɭɦɚ ɧɚ ɤɪɢɜɨɣ
C
I
(ɪɢɫ. 1). ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɜ ɧɚɱɚɥɶɧɵɣ ɩɪɨɦɟɠɭɬɨɤ ɜɪɟɦɟɧɢ ɤɨɧɰɟɧɬɪɚ-
ɰɢɹ ɩɪɨɞɭɤɬɚ B ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɚ ɢ, ɯɨɬɹ ɪɚɫ-
ɬɟɬ ɫ ɜɨɡɪɚɫɬɚɸɳɟɣ ɫɤɨɪɨɫɬɶɸ, ɦɨɠɟɬ ɜɨɨɛ-
ɳɟ ɧɟ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ. ȼɪɟɦɹ, ɜ ɬɟɱɟɧɢɟ ɤɨ-
ɬɨɪɨɝɨ ɩɪɨɞɭɤɬ ɧɟɜɨɡɦɨɠɧɨ ɨɛɧɚɪɭɠɢɬɶ, ɧɚ-
ɡɵɜɚɟɬɫɹ ɢɧɞɭɤɰɢɨɧɧɵɦ ɩɟɪɢɨɞɨɦ. Ʉɪɨɦɟ ɫɨ-
ɨɬɧɨɲɟɧɢɹ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ ɨɧ ɨɩɪɟɞɟɥɹ-
ɟɬɫɹ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶɸ ɚɧɚɥɢɬɢɱɟɫɤɨɝɨ ɨɛɨ-
ɪɭɞɨɜɚɧɢɹ.
15
Ɋɚɫɫɦɨɬɪɢɦ ɜ ɫɜɹɡɢ ɫ ɷɬɢɦ ɞɜɚ ɩɪɟɞɟɥɶ-
ɧɵɯ ɪɟɠɢɦɚ, ɜ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɩɪɨɬɟɤɚɬɶ ɩɨ-
ɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ.
1. ɉɨɫɤɨɥɶɤɭ ɦɚɤɫɢɦɭɦ ɤɨɧɰɟɧɬɪɚɰɢɢ I
ɫɨɜɩɚɞɚɟɬ ɩɨ ɜɪɟɦɟɧɢ ɫ ɬɨɱɤɨɣ ɩɟɪɟɝɢɛɚ ɧɚ
ɤɪɢɜɨɣ C
B
, ɢɧɞɭɤɰɢɨɧɧɵɣ ɩɟɪɢɨɞ ɬɟɦ ɛɨɥɶɲɟ, ɱɟɦ ɦɟɧɶɲɟ ɨɬɧɨɲɟɧɢɟ
ɤɨɧɫɬɚɧɬ K, ɬɨ ɟɫɬɶ, ɱɟɦ ɦɟɞɥɟɧɧɟɟ ɜɬɨɪɚɹ ɫɬɚɞɢɹ. ȼ ɩɪɟɞɟɥɟ, ɤɨɝɞɚ k
2
ĺ 0,
ɩɪɨɞɭɤɬ ɜɨɨɛɳɟ ɧɟ ɩɨɹɜɥɹɟɬɫɹ – ɜɬɨɪɚɹ ɪɟɚɤɰɢɹ ɩɪɨɫɬɨ ɧɟ ɢɞɟɬ. ȿɫɥɢ ɠɟ
k
2
" k
1
(ɧɨ ɤɨɧɟɱɧɨ!), ɬɨ ɜ ɭɪɚɜɧɟɧɢɢ (I.10) ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ ɱɥɟɧɨɦ, ɫɨ-
ɞɟɪɠɚɳɢɦ e
–k
1
W,
ɢ ɜɟɥɢɱɢɧɨɣ k
2
ɜ ɡɧɚɦɟɧɚɬɟɥɟ. Ɍɨɝɞɚ ɜɦɟɫɬɨ (I.10) ɩɨɥɭɱɢɬ-
ɫɹ ɮɭɧɤɰɢɹ, ɩɪɢɛɥɢɠɟɧɧɨ ɫɨɜɩɚɞɚɸɳɚɹ ɫ (I.7-2):
Ɋɢɫ. 1
C
B
(W) = C
A
0
(1 – e
–k
2
W
).
ɗɬɨ ɡɧɚɱɢɬ, ɱɬɨ ɩɪɨɞɭɤɬ ɧɚɤɚɩɥɢɜɚɟɬɫɹ ɬɚɤ, ɤɚɤ ɟɫɥɢ ɛɵ ɲɥɚ ɧɟɩɨɫɪɟɞɫɬ-
ɜɟɧɧɨ ɪɟɚɤɰɢɹ A ĺ B ɫ ɤɨɧɫɬɚɧɬɨɣ k
2
.
2. ɉɭɫɬɶ ɬɟɩɟɪɶ k
1
" k
2
. Ɍɨɝɞɚ, ɩɪɟɧɟɛɪɟɝɚɹ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦɢ ɱɥɟɧɚ-
ɦɢ ɜ (I.10), ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ:
C
B
(W) = C
A
0
(1 – e
–k
1
W
).
Ɉɤɚɡɵɜɚɟɬɫɹ, ɱɬɨ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɨɛɪɚɡɨɜɚɧɢɟ ɜɟɳɟɫɬɜɚ B ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɤɨ-
ɪɨɫɬɶɸ ɦɟɞɥɟɧɧɨɣ ɪɟɚɤɰɢɢ 1, ɚ ɩɪɨɦɟɠɭɬɨɱɧɨɟ ɜɟɳɟɫɬɜɨ ɧɚɫɬɨɥɶɤɨ ɚɤɬɢɜ-
ɧɨ, ɱɬɨ ɜɫɬɭɩɚɟɬ ɜ ɪɟɚɤɰɢɸ, ɧɟ ɭɫɩɟɜɚɹ ɨɛɪɚɡɨɜɚɬɶɫɹ.
ɗɬɢ ɩɪɟɞɟɥɶɧɵɟ ɫɥɭɱɚɢ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɨɦ ɧɟɪɚɜɟɧɫɬɜɟ
ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɶ ɨɛɪɚɡɨɜɚɧɢɹ ɩɨɫɥɟɞɧɟɝɨ ɜɟɳɟɫɬɜɚ ɜ ɰɟɩɨɱɤɟ ɩɪɟɜɪɚɳɟ-
ɧɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ
ɫɚɦɨɣ ɦɟɞɥɟɧɧɨɣ ɫɬɚɞɢɟɣ. Ɉɛ ɷɬɨɦ ɪɚɫɩɪɨ-
ɫɬɪɚɧɟɧɧɨɦ ɹɜɥɟɧɢɢ ɝɨɜɨɪɹɬ, ɱɬɨ ɫɤɨɪɨɫɬɶ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɣ ɪɟɚɤɰɢɢ ɥɢ-
ɦɢɬɢɪɭɟɬɫɹ ɦɟɞɥɟɧɧɨɣ ɫɬɚɞɢɟɣ.
7. Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ
ȼ ɩɪɚɜɨɣ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɹ ɡɚɤɨɧɚ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɜɟɥɢɱɢɧɨɣ, ɡɚɜɢ-
ɫɹɳɟɣ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ, ɹɜɥɹɟɬɫɹ ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ. Ɇɨɠɧɨ ɫɤɚɡɚɬɶ, ɱɬɨ ɜ
ɷɬɨɦ ɭɪɚɜɧɟɧɢɢ ɪɚɡɞɟɥɟɧɵ ɩɟɪɟɦɟɧɧɵɟ: v = k(T)f(C), ɝɞɟ k – ɮɭɧɤɰɢɹ ɬɨɥɶ-
ɤɨ ɬɟɦɩɟɪɚɬɭɪɵ, f – ɮɭɧɤɰɢɹ ɬɨɥɶɤɨ ɤɨɧɰɟɧɬɪɚɰɢɣ. ɉɨɷɬɨɦɭ ɡɚɜɢɫɢɦɨɫɬɶ
ɫɤɨɪɨɫɬɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɮɨɪɦɭɥɢɪɭɟɬɫɹ ɢɦɟɧɧɨ ɞɥɹ ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ.
Ɉɩɢɲɟɦ ɜ ɧɚɱɚɥɟ ɞɜɟ ɷɦɩɢɪɢɱɟɫɤɢɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ.
1. ɋɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ (J. H. van’t Hoff, 1884) ɫɤɨɪɨɫɬɶ ɪɟɚɤ-
ɰɢɢ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜ ɨɞɧɨ ɢ ɬɨ ɠɟ ɱɢɫɥɨ ɪɚɡ ɩɪɢ ɤɚɠɞɨɦ ɭɜɟɥɢɱɟɧɢɢ ɬɟɦ-
ɩɟɪɚɬɭɪɵ ɧɚ ɨɞɧɭ ɢ ɬɭ ɠɟ ɜɟɥɢɱɢɧɭ 'T:
()
(
()
TT
T
T
)
'
J '
k
k
. (I.11)
Ʉɨɷɮɮɢɰɢɟɧɬ
J ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ T, ɧɨ ɡɚɜɢɫɢɬ ɨɬ
ɟɟ
ɩɪɢɪɚɳɟɧɢɹ 'T. Ɇɵ ɧɚɡɨɜɟɦ ɟɝɨ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ
ȼɚɧɬ-Ƚɨɮɮɚ.
Ⱦɥɹ ɛɨɥɶɲɢɧɫɬɜɚ ɪɟɚɤɰɢɣ ɜɟɥɢɱɢɧɚ
(10 Ʉ)J ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 2 ɞɨ
4, ɬɨ ɟɫɬɶ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ 10 Ʉ ɫɤɨɪɨɫɬɶ ɜɨɡɪɚɫɬɚɟɬ ɜ 2–4
ɪɚɡɚ. ɋɭɳɟɫɬɜɭɸɬ, ɨɞɧɚɤɨ, ɪɟɚɤɰɢɢ, ɞɟɫɹɬɢɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɬɨ-
ɪɵɯ ɞɨɫɬɢɝɚɟɬ ɡɧɚɱɟɧɢɹ
(10 Ʉ)10J .
2. ɏɨɪɨɲɨ ɨɩɢɫɵɜɚɸɳɢɦ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɛɨɥɶɲɢɧɫɬɜɚ
ɪɟɚɤɰɢɣ ɨɤɚɡɚɥɨɫɶ ɭɪɚɜɧɟɧɢɟ, ɩɪɟɞɥɨɠɟɧɧɨɟ Ⱥɪɪɟɧɢɭɫɨɦ (S. A. Arrhenius,
1889):
0
()
a
ERT
Te
kk . (I.12)
Ɂɞɟɫɶ k
0
ɢ E
a
– ɩɚɪɚɦɟɬɪɵ, ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɡɚɜɢɫɹɳɢɟ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ȼɟ-
ɥɢɱɢɧɚ E
a
, ɢɦɟɸɳɚɹ ɪɚɡɦɟɪɧɨɫɬɶ ɷɧɟɪɝɢɢ, ɧɚɡɵɜɚɟɬɫɹ ɷɧɟɪɝɢɟɣ ɚɤɬɢɜɚɰɢɢ,
16
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɢɧɬɟɝɪɢɪɭɟɬɫɹ ɭɠɟ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ, ɩɨɫɤɨɥɶɤɭ ɩɟɪɟɦɟɧ- ɗɬɨ ɡɧɚɱɢɬ, ɱɬɨ ɩɪɨɞɭɤɬ ɧɚɤɚɩɥɢɜɚɟɬɫɹ ɬɚɤ, ɤɚɤ ɟɫɥɢ ɛɵ ɲɥɚ ɧɟɩɨɫɪɟɞɫɬ- ɧɵɟ CB ɢ W ɜ ɧɟɦ ɪɚɡɞɟɥɟɧɵ: ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ CI|W = 0 = 0 ɜɟɧɧɨ ɪɟɚɤɰɢɹ A ĺ B ɫ ɤɨɧɫɬɚɧɬɨɣ k2. CB ( W ) W 2. ɉɭɫɬɶ ɬɟɩɟɪɶ k1 " k2. Ɍɨɝɞɚ, ɩɪɟɧɟɛɪɟɝɚɹ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦɢ ɱɥɟɧɚ- k1k2 y 0 dCB C A0 k2 k1 ye 0 k1W e k2W d W . ɦɢ ɜ (I.10), ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ: CB(W) = CA0(1 – e–k1W). ɉɨɫɥɟ ɜɵɱɢɫɥɟɧɢɹ ɢɧɬɟɝɪɚɥɚ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɩɨɥɭɱɚɟɬɫɹ: Ɉɤɚɡɵɜɚɟɬɫɹ, ɱɬɨ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɨɛɪɚɡɨɜɚɧɢɟ ɜɟɳɟɫɬɜɚ B ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɤɨ- k2 k1 ɪɨɫɬɶɸ ɦɟɞɥɟɧɧɨɣ ɪɟɚɤɰɢɢ 1, ɚ ɩɪɨɦɟɠɭɬɨɱɧɨɟ ɜɟɳɟɫɬɜɨ ɧɚɫɬɨɥɶɤɨ ɚɤɬɢɜ- CB (W) C A0 §¨1 e k1W e k2W ·¸ . (I.10) ɧɨ, ɱɬɨ ɜɫɬɭɩɚɟɬ ɜ ɪɟɚɤɰɢɸ, ɧɟ ɭɫɩɟɜɚɹ ɨɛɪɚɡɨɜɚɬɶɫɹ. © k2 k1 k2 k1 ¹ ɗɬɢ ɩɪɟɞɟɥɶɧɵɟ ɫɥɭɱɚɢ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɨɦ ɧɟɪɚɜɟɧɫɬɜɟ ɉɪɨɚɧɚɥɢɡɢɪɭɟɦ ɩɨɥɭɱɟɧɧɵɟ ɪɟɡɭɥɶɬɚɬɵ. ɇɚɢɛɨɥɟɟ ɢɧɬɟɪɟɫɧɨ ɩɨɜɟɞɟ- ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɶ ɨɛɪɚɡɨɜɚɧɢɹ ɩɨɫɥɟɞɧɟɝɨ ɜɟɳɟɫɬɜɚ ɜ ɰɟɩɨɱɤɟ ɩɪɟɜɪɚɳɟ- ɧɢɟ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ I, ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɬɨɪɨɝɨ ɧɟɦɨɧɨɬɨɧɧɨ ɢɡ- ɧɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫ ɚ ɦ ɨ ɣ ɦ ɟ ɞ ɥ ɟ ɧ ɧ ɨ ɣ ɫ ɬ ɚ ɞ ɢ ɟ ɣ . Ɉɛ ɷɬɨɦ ɪɚɫɩɪɨ- ɦɟɧɹɟɬɫɹ ɫɨ ɜɪɟɦɟɧɟɦ. Ɏɭɧɤɰɢɹ (I.9) ɹɜɥɹɟɬɫɹ ɤɨɦɛɢɧɚɰɢɟɣ ɞɜɭɯ ɷɤɫɩɨ- ɫɬɪɚɧɟɧɧɨɦ ɹɜɥɟɧɢɢ ɝɨɜɨɪɹɬ, ɱɬɨ ɫɤɨɪɨɫɬɶ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɣ ɪɟɚɤɰɢɢ ɥɢ- ɧɟɧɬ ɢ ɢɦɟɟɬ ɦɚɤɫɢɦɭɦ ɜ ɬɨɱɤɟ ɦɢɬɢɪɭɟɬɫɹ ɦɟɞɥɟɧɧɨɣ ɫɬɚɞɢɟɣ. 1 k2 Wmax ln K , ɝɞɟ K 7. Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ k2 k1 k1 ɹɜɥɹɟɬɫɹ ɨɬɧɨɲɟɧɢɟɦ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɨɦɟɠɭɬɨɱɧɨɟ ȼ ɩɪɚɜɨɣ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɹ ɡɚɤɨɧɚ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɜɟɥɢɱɢɧɨɣ, ɡɚɜɢ- ɜɟɳɟɫɬɜɨ ɞɨ ɧɟɤɨɬɨɪɨɝɨ ɦɨɦɟɧɬɚ ɧɚɤɚɩɥɢɜɚɟɬɫɹ, ɚ ɞɚɥɟɟ ɢɫɱɟɡɚɟɬ. Ʉɢɧɟɬɢ- ɫɹɳɟɣ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ, ɹɜɥɹɟɬɫɹ ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ. Ɇɨɠɧɨ ɫɤɚɡɚɬɶ, ɱɬɨ ɜ ɱɟɫɤɚɹ ɤɪɢɜɚɹ ɞɥɹ ɧɟɝɨ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ. 1. ɷɬɨɦ ɭɪɚɜɧɟɧɢɢ ɪɚɡɞɟɥɟɧɵ ɩɟɪɟɦɟɧɧɵɟ: v = k(T)f(C), ɝɞɟ k – ɮɭɧɤɰɢɹ ɬɨɥɶ- ȼɟɳɟɫɬɜɨ B ɜɟɞɟɬ ɫɟɛɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨ ɧɚ ɟɝɨ ɤɢɧɟɬɢɱɟɫɤɨɣ ɤɪɢɜɨɣ ɤɨ ɬɟɦɩɟɪɚɬɭɪɵ, f – ɮɭɧɤɰɢɹ ɬɨɥɶɤɨ ɤɨɧɰɟɧɬɪɚɰɢɣ. ɉɨɷɬɨɦɭ ɡɚɜɢɫɢɦɨɫɬɶ ɢɦɟɟɬɫɹ ɩɟɪɟɝɢɛ, ɫɨɜɩɚɞɚɸɳɢɣ ɩɨ ɜɪɟɦɟɧɢ ɫ ɬɨɱɤɨɣ ɦɚɤɫɢɦɭɦɚ ɧɚ ɤɪɢɜɨɣ ɫɤɨɪɨɫɬɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɮɨɪɦɭɥɢɪɭɟɬɫɹ ɢɦɟɧɧɨ ɞɥɹ ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ. CI (ɪɢɫ. 1). ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɜ ɧɚɱɚɥɶɧɵɣ ɩɪɨɦɟɠɭɬɨɤ ɜɪɟɦɟɧɢ ɤɨɧɰɟɧɬɪɚ- Ɉɩɢɲɟɦ ɜ ɧɚɱɚɥɟ ɞɜɟ ɷɦɩɢɪɢɱɟɫɤɢɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ. ɰɢɹ ɩɪɨɞɭɤɬɚ B ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɚ ɢ, ɯɨɬɹ ɪɚɫ- 1. ɋɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ (J. H. van’t Hoff, 1884) ɫɤɨɪɨɫɬɶ ɪɟɚɤ- ɬɟɬ ɫ ɜɨɡɪɚɫɬɚɸɳɟɣ ɫɤɨɪɨɫɬɶɸ, ɦɨɠɟɬ ɜɨɨɛ- ɰɢɢ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜ ɨɞɧɨ ɢ ɬɨ ɠɟ ɱɢɫɥɨ ɪɚɡ ɩɪɢ ɤɚɠɞɨɦ ɭɜɟɥɢɱɟɧɢɢ ɬɟɦ- ɳɟ ɧɟ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ. ȼɪɟɦɹ, ɜ ɬɟɱɟɧɢɟ ɤɨ- ɩɟɪɚɬɭɪɵ ɧɚ ɨɞɧɭ ɢ ɬɭ ɠɟ ɜɟɥɢɱɢɧɭ 'T: ɬɨɪɨɝɨ ɩɪɨɞɭɤɬ ɧɟɜɨɡɦɨɠɧɨ ɨɛɧɚɪɭɠɢɬɶ, ɧɚ- k(T 'T ) ɡɵɜɚɟɬɫɹ ɢɧɞɭɤɰɢɨɧɧɵɦ ɩɟɪɢɨɞɨɦ. Ʉɪɨɦɟ ɫɨ- J ( 'T ) . (I.11) k(T ) ɨɬɧɨɲɟɧɢɹ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ ɨɧ ɨɩɪɟɞɟɥɹ- ɟɬɫɹ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶɸ ɚɧɚɥɢɬɢɱɟɫɤɨɝɨ ɨɛɨ- Ʉɨɷɮɮɢɰɢɟɧɬ J ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ T, ɧɨ ɡɚɜɢɫɢɬ ɨɬ ɪɭɞɨɜɚɧɢɹ. ɟɟ ɩ ɪ ɢ ɪ ɚ ɳ ɟ ɧ ɢ ɹ 'T. Ɇɵ ɧɚɡɨɜɟɦ ɟɝɨ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ Ɋɚɫɫɦɨɬɪɢɦ ɜ ɫɜɹɡɢ ɫ ɷɬɢɦ ɞɜɚ ɩɪɟɞɟɥɶ- ȼɚɧɬ-Ƚɨɮɮɚ. ɧɵɯ ɪɟɠɢɦɚ, ɜ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɩɪɨɬɟɤɚɬɶ ɩɨ- Ⱦɥɹ ɛɨɥɶɲɢɧɫɬɜɚ ɪɟɚɤɰɢɣ ɜɟɥɢɱɢɧɚ J (10 Ʉ) ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 2 ɞɨ ɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ. 4, ɬɨ ɟɫɬɶ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ 10 Ʉ ɫɤɨɪɨɫɬɶ ɜɨɡɪɚɫɬɚɟɬ ɜ 2–4 1. ɉɨɫɤɨɥɶɤɭ ɦɚɤɫɢɦɭɦ ɤɨɧɰɟɧɬɪɚɰɢɢ I Ɋɢɫ. 1 ɪɚɡɚ. ɋɭɳɟɫɬɜɭɸɬ, ɨɞɧɚɤɨ, ɪɟɚɤɰɢɢ, ɞɟɫɹɬɢɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɬɨ- ɫɨɜɩɚɞɚɟɬ ɩɨ ɜɪɟɦɟɧɢ ɫ ɬɨɱɤɨɣ ɩɟɪɟɝɢɛɚ ɧɚ ɪɵɯ ɞɨɫɬɢɝɚɟɬ ɡɧɚɱɟɧɢɹ J (10 Ʉ) 10 . ɤɪɢɜɨɣ CB, ɢɧɞɭɤɰɢɨɧɧɵɣ ɩɟɪɢɨɞ ɬɟɦ ɛɨɥɶɲɟ, ɱɟɦ ɦɟɧɶɲɟ ɨɬɧɨɲɟɧɢɟ 2. ɏɨɪɨɲɨ ɨɩɢɫɵɜɚɸɳɢɦ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɛɨɥɶɲɢɧɫɬɜɚ ɤɨɧɫɬɚɧɬ K, ɬɨ ɟɫɬɶ, ɱɟɦ ɦɟɞɥɟɧɧɟɟ ɜɬɨɪɚɹ ɫɬɚɞɢɹ. ȼ ɩɪɟɞɟɥɟ, ɤɨɝɞɚ k2 ĺ 0, ɪɟɚɤɰɢɣ ɨɤɚɡɚɥɨɫɶ ɭɪɚɜɧɟɧɢɟ, ɩɪɟɞɥɨɠɟɧɧɨɟ Ⱥɪɪɟɧɢɭɫɨɦ (S. A. Arrhenius, ɩɪɨɞɭɤɬ ɜɨɨɛɳɟ ɧɟ ɩɨɹɜɥɹɟɬɫɹ – ɜɬɨɪɚɹ ɪɟɚɤɰɢɹ ɩɪɨɫɬɨ ɧɟ ɢɞɟɬ. ȿɫɥɢ ɠɟ 1889): k2 " k1 (ɧɨ ɤɨɧɟɱɧɨ!), ɬɨ ɜ ɭɪɚɜɧɟɧɢɢ (I.10) ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ ɱɥɟɧɨɦ, ɫɨ- ɞɟɪɠɚɳɢɦ e–k1W, ɢ ɜɟɥɢɱɢɧɨɣ k2 ɜ ɡɧɚɦɟɧɚɬɟɥɟ. Ɍɨɝɞɚ ɜɦɟɫɬɨ (I.10) ɩɨɥɭɱɢɬ- k(T ) k0 e Ea RT . (I.12) ɫɹ ɮɭɧɤɰɢɹ, ɩɪɢɛɥɢɠɟɧɧɨ ɫɨɜɩɚɞɚɸɳɚɹ ɫ (I.7-2): Ɂɞɟɫɶ k0 ɢ Ea – ɩɚɪɚɦɟɬɪɵ, ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɡɚɜɢɫɹɳɢɟ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ȼɟ- CB(W) = CA0(1 – e–k2W). ɥɢɱɢɧɚ Ea, ɢɦɟɸɳɚɹ ɪɚɡɦɟɪɧɨɫɬɶ ɷɧɟɪɝɢɢ, ɧɚɡɵɜɚɟɬɫɹ ɷɧɟɪɝɢɟɣ ɚɤɬɢɜɚɰɢɢ, 15 16
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »