Химическая кинетика. Наумов А.В. - 7 стр.

UptoLike

Составители: 

Рубрика: 

v(W) = kC
A
0
e
kW
.
ɉɨɫɬɚɜɥɟɧɧɚɹ ɡɚɞɚɱɚ ɩɨɥɧɨɫɬɶɸ ɪɟɲɟɧɚ.
2. Ɋɚɫɫɦɨɬɪɢɦ ɬɟɩɟɪɶ ɛɢɦɨɥɟɤɭɥɹɪɧɭɸ ɪɟɚɤɰɢɸ ɬɢɩɚ (11):
A + B ĺ ɩɪɨɞɭɤɬɵ.
Ɉɫɧɨɜɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɢɦɟɟɬ ɜɢɞ:
A
AB
CCC
k (I.8)
ɫ ɧɚɱɚɥɶɧɵɦ ɭɫɥɨɜɢɟɦ
C
A
|
W = 0
= C
A
0
ɢ C
B
|
W = 0
= C
B
0
. ɉɨ ɨɩɪɟɞɟɥɟɧɢɸ ɫɤɨɪɨ-
ɫɬɢ (I.4) ɭɪɚɜɧɟɧɢɟ (I.8) ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɤɚɤ ɨɬɧɨɫɢɬɟɥɶɧɨ
C
A
, ɬɚɤ ɢ ɨɬɧɨ-
ɫɢɬɟɥɶɧɨ
C
B
ɜ ɥɟɜɨɣ ɱɚɫɬɢ.
Ɏɭɧɤɰɢɢ C
A
ɢ C
B
ɧɟ ɹɜɥɹɸɬɫɹ ɧɟɡɚɜɢɫɢɦɵɦɢ, ɚ ɢɦɟɧɧɨ, ɩɨ ɫɬɟɯɢɨɦɟɬ-
ɪɢɱɟɫɤɨɦɭ ɡɚɤɨɧɭ (I.2)
C
A
C
A
0
= C
B
C
B
0
.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ (I.8) ɩɪɢɜɨɞɢɬɫɹ ɤ ɜɢɞɭ:
00
()
A
AB A A
CCCCC
k .
ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɭɠɟ ɧɟɥɶɡɹ ɪɟɲɢɬɶ ɩɪɹɦɵɦ ɢɧɬɟɝɪɢɪɨɜɚɧɢ-
ɟɦ. Ɍɚɤɢɟ ɭɪɚɜɧɟɧɢɹ ɪɟɲɚɸɬ ɦɟɬɨɞɨɦ ɜɚɪɢɚɰɢɢ ɩɪɨɢɡɜɨɥɶɧɨɣ ɩɨɫɬɨɹɧɧɨɣ.
Ɉɞɧɚɤɨ ɨɧɨ ɭɩɪɨɳɚɟɬɫɹ ɢ ɫɜɨɞɢɬɫɹ ɤ ɭɪɚɜɧɟɧɢɸ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟ-
ɦɟɧɧɵɦɢ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ
C
A
0
= C
B
0
:
2
A
A
CC
k .
ȼɵɱɢɫɥɹɹ ɢɧɬɟɝɪɚɥ ɢ ɩɪɢɦɟɧɹɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ, ɩɨɥɭɱɢɦ:
0
0
()
1
A
A
A
C
C
C
W
Wk
.
ɗɬɨ ɦɨɧɨɬɨɧɧɨ ɭɛɵɜɚɸɳɚɹ ɮɭɧɤɰɢɹ, ɢɦɟɸɳɚɹ ɩɪɟɞɟɥ ɩɪɢ W ĺ f, ɪɚɜɧɵɣ 0.
ɂɧɬɟɪɟɫɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɫɨɝɥɚɫɧɨ ɜɵɜɟɞɟɧɧɵɦ ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɪɚɜɧɟɧɢɹɦ ɡɚɜɢɫɢ-
ɦɨɫɬɢ C
i
(W) ɧɟ ɞɨɫɬɢɝɚɸɬ ɫɜɨɟɣ ɧɢɠɧɟɣ ɝɪɚɧɢɧɭɥɹ. ɗɬɨ ɞɨɥɠɧɨ ɨɡɧɚɱɚɬɶ, ɱɬɨ ɩɪɟ-
ɜɪɚɳɚɸɳɟɟɫɹ ɜɟɳɟɫɬɜɨ ɧɢɤɨɝɞɚ ɧɟ ɢɫɱɟɪɩɚɟɬɫɹ, ɚ ɫɚɦɚ ɪɟɚɤɰɢɹ ɧɢɤɨɝɞɚ ɧɟ ɡɚɤɨɧɱɢɬɫɹ.
Ʉɚɠɟɬɫɹ, ɱɬɨ ɷɬɨ ɹɜɧɨ ɩɪɨɬɢɜɨɪɟɱɢɬ ɧɚɛɥɸɞɟɧɢɹɦ ɢ ɡɞɪɚɜɨɦɭ ɫɦɵɫɥɭ. Ⱦɟɥɨ ɠɟ ɨɛɫɬɨɢɬ
ɬɚɤ. ȼɨ-ɩɟɪɜɵɯ, ɤɚɤ ɦɵ ɭɜɢɞɢɦ ɞɚɥɟɟ, ɜɫɟ ɪɟɚɤɰɢɢ ɹɜɥɹɸɬɫɹ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ
ɨɛɪɚɬɢɦɵɦɢ, ɢ ɮɢɧɚɥɨɦ ɩɪɨɰɟɫɫɚ ɛɭɞɟɬ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ, ɜ ɤɨɬɨɪɨɦ ɤɨɧɰɟɧɬɪɚ-
ɰɢɢ ɜɫɟɯ ɜɟɳɟɫɬɜ (ɢ ɢɫɯɨɞɧɵɯ ɢ ɩɪɨɞɭɤɬɨɜ) ɨɬɥɢɱɧɵ ɨɬ ɧɭɥɹ. ȼɨ-ɜɬɨɪɵɯ, ɟɫɥɢ ɪɟɚɤɰɢɹ
ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɚ, ɬɨ ɧɚɛɥɸɞɚɟɦɵɣ «ɦɨɦɟɧɬ» ɡɚɜɟɪɲɟɧɢɹ ɪɟɚɤɰɢɢ ɫɨɜɩɚɞɚɟɬ ɫ
ɬɟɦ ɦɨɦɟɧɬɨɦ (W
f
), ɤɨɝɞɚ ɜ ɫɢɫɬɟɦɟ ɩɟɪɟɫɬɚɟɬ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ ɜɟɳɟɫɬɜɨ. ɗɬɨ ɫɨɫɬɨɹɧɢɟ
ɧɚɫɬɭɩɢɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ C
A
ɫɬɚɧɟɬ ɦɟɧɶɲɟ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɢ ɩɪɢɛɨɪɚ GC
A
, ɢɡɦɟ-
ɪɹɸɳɟɝɨ ɷɬɭ ɤɨɧɰɟɧɬɪɚɰɢɸ. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ
0
1
ln
A
A
C
C
f
W
G
k
·
.
ɇɚɩɪɢɦɟɪ, ɟɫɥɢ ɩɟɪɢɨɞ ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W
1/2
= 10 ɫ, ɚ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ GC
A
= 10
–5 ɦɨɥɶ
e
ɥ
, ɬɨ
W
f
· 166 ɫ ɩɪɢ ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ 1
ɦɨɥɶ
e
ɥ
.
13
6. ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ
Ʉɚɤ ɦɵ ɨɬɦɟɱɚɥɢ, ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ ɢɞɭɬ ɧɟ ɨɞɧɨɚɤɬɧɨ, ɚɜɧɟ-
ɫɤɨɥɶɤɨ ɫɬɚɞɢɣ. ȼɨɡɦɨɠɧɵ ɩɪɨɰɟɫɫɵ, ɪɚɡɜɢɜɚɸɳɢɟɫɹ ɫɪɚɡɭ ɩɨ ɞɜɭɦ ɢɥɢ
ɧɟɫɤɨɥɶɤɢɦ ɩɭɬɹɦ. ɇɚɩɪɢɦɟɪ,
.
Ɍɚɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɡɵɜɚɸɬ ɩɚɪɚɥɥɟɥɶɧɵɦɢ. Ⱦɪɭɝɨɣ ɬɢɩ ɫɥɨɠɧɵɯ ɪɟɚɤɰɢɣ
ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ, ɜ ɤɨɬɨɪɵɯ ɜɟɳɟɫɬɜɚ ɩɟɪɟɯɨɞɹɬ ɞɪɭɝ ɜ ɞɪɭɝɚ ɩɨ ɰɟɩɨɱɤɟ
ɩɪɟɜɪɚɳɟɧɢɣ.
Ɋɚɫɫɦɨɬɪɢɦ ɞɜɟ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɵɟ ɪɟɚɤɰɢɢ, ɢɞɭ-
ɳɢɟ ɩɨ ɫɯɟɦɟ:
12
IB'' .
ȼɟɳɟɫɬɜɨ I, ɨɛɪɚɡɭɸɳɟɟɫɹ ɜ ɩɟɪɜɨɣ ɪɟɚɤɰɢɢ A ĺ I ɢ ɪɚɫɯɨɞɭɸɳɟɟɫɹ ɜɨ ɜɬɨ-
ɪɨɣ I ĺ B, ɧɚɡɵɜɚɸɬ ɩɪɨɦɟɠɭɬɨɱɧɵɦ. ɋɥɟɞɭɟɬ ɩɨɞɱɟɪɤɧɭɬɶ: ɩɨɞɨɛɧɚɹ ɪɟ-
ɚɤɰɢɨɧɧɚɹ ɫɯɟɦɚ ɧɟ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɫɧɚɱɚɥɚ ɡɚɜɟɪɲɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 1, ɚɩɨ-
ɫɥɟ ɬɨɝɨ ɧɚɱɢɧɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 2. Ʉɚɤ ɬɨɥɶɤɨ ɜ ɫɢɫɬɟɦɟ ɩɨɹɜɢɬɫɹ ɜɟɳɟɫɬɜɨ
I, ɨɧɨ ɜɫɬɭɩɚɟɬ ɜ ɫɥɟɞɭɸɳɭɸ ɪɟɚɤɰɢɸ, ɢ ɨɛɚ ɩɪɨɰɟɫɫɚ ɢɞɭɬ ɨɞɧɨɜɪɟɦɟɧɧɨ.
Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɤɢɧɟɬɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ ɞɥɹ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ A
ɢ ɮɢɧɚɥɶɧɨɝɨ ɩɪɨɞɭɤɬɚ B ɢɦɟɸɬ ɜɢɞ:
1
A
A
CC
k ,,
2BI
CC k
ɝɞɟ k
1
ɢ k
2
ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɟɣ ɩɟɪɜɨɣ ɢ ɜɬɨɪɨɣ ɪɟɚɤɰɢɣ. Ɋɟɲɟɧɢɟ ɩɟɪ-
ɜɨɝɨ ɭɪɚɜɧɟɧɢɹ ɧɟ ɜɵɡɵɜɚɟɬ ɡɚɬɪɭɞɧɟɧɢɣ: ɨɧɨ ɭɠɟ ɩɨɥɭɱɟɧɨ ɩɨɞ ɧɨɦɟɪɨɦ
(I.7-1). ɑɬɨɛɵ ɪɟɲɢɬɶ ɜɬɨɪɨɟ ɭɪɚɜɧɟɧɢɟ ɬɪɟɛɭɟɬɫɹ ɡɧɚɬɶ ɮɭɧɤɰɢɸ C
I
(W), ɩɨ
ɤɨɬɨɪɨɣ ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ. Ⱦɥɹ ɷɬɨɣ ɩɨ-
ɫɥɟɞɧɟɣ ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ:
12 1 2
I
AI
CC vv k k
C .
ɉɨɞɫɬɚɜɥɹɹ ɫɸɞɚ ɮɭɧɤɰɢɸ (I.7-1), ɩɨɥɭɱɢɦ:
1
0
21IIA
CCCe
W
k
kk
.
ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ, ɫɨɞɟɪɠɚɳɟɟ ɹɜɧɭɸ ɮɭɧɤɰɢɸ ɜɪɟɦɟɧɢ ɜ ɩɪɚ-
ɜɨɣ ɱɚɫɬɢ, ɢɦɟɟɬ ɪɟɲɟɧɢɟ
1
0
1
21
()
IA
CC ee
2
WW
W
kk
k
kk
(I.9)
ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ C
I
|
W = 0
= 0. Ɍɨɝɞɚ ɞɥɹ ɩɪɨɞɭɤɬɚ ɪɟɚɤɰɢɢ B ɩɨɫɥɟ ɩɨɞ-
ɫɬɚɧɨɜɤɢ (I.9) ɜ ɢɫɯɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɟɝɨ ɧɚɤɨɩɥɟɧɢɹ ɢɦɟɟɦ:

12
0
12
21
BA
CC e e
WW
kk
kk
kk
.
14
                              v(W) = kCA0e–kW.                                                                     6. ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ
ɉɨɫɬɚɜɥɟɧɧɚɹ ɡɚɞɚɱɚ ɩɨɥɧɨɫɬɶɸ ɪɟɲɟɧɚ.
                                                                                                 Ʉɚɤ ɦɵ ɨɬɦɟɱɚɥɢ, ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ ɢɞɭɬ ɧɟ ɨɞɧɨɚɤɬɧɨ, ɚ ɜ ɧɟ-
   2. Ɋɚɫɫɦɨɬɪɢɦ ɬɟɩɟɪɶ ɛɢɦɨɥɟɤɭɥɹɪɧɭɸ ɪɟɚɤɰɢɸ ɬɢɩɚ (11):
                                                                                              ɫɤɨɥɶɤɨ ɫɬɚɞɢɣ. ȼɨɡɦɨɠɧɵ ɩɪɨɰɟɫɫɵ, ɪɚɡɜɢɜɚɸɳɢɟɫɹ ɫɪɚɡɭ ɩɨ ɞɜɭɦ ɢɥɢ
                            A + B ĺ ɩɪɨɞɭɤɬɵ.
                                                                                              ɧɟɫɤɨɥɶɤɢɦ ɩɭɬɹɦ. ɇɚɩɪɢɦɟɪ,
Ɉɫɧɨɜɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɢɦɟɟɬ ɜɢɞ:
                                         C A     kC ACB             (I.8)                                                                                        .
                                         0                    0
ɫ ɧɚɱɚɥɶɧɵɦ ɭɫɥɨɜɢɟɦ CA|W = 0 = CA ɢ CB|W = 0 = CB . ɉɨ ɨɩɪɟɞɟɥɟɧɢɸ ɫɤɨɪɨ-
ɫɬɢ (I.4) ɭɪɚɜɧɟɧɢɟ (I.8) ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɤɚɤ ɨɬɧɨɫɢɬɟɥɶɧɨ CA, ɬɚɤ ɢ ɨɬɧɨ-
ɫɢɬɟɥɶɧɨ CB ɜ ɥɟɜɨɣ ɱɚɫɬɢ.                                                                    Ɍɚɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɡɵɜɚɸɬ ɩɚɪɚɥɥɟɥɶɧɵɦɢ. Ⱦɪɭɝɨɣ ɬɢɩ ɫɥɨɠɧɵɯ ɪɟɚɤɰɢɣ –
    Ɏɭɧɤɰɢɢ CA ɢ CB ɧɟ ɹɜɥɹɸɬɫɹ ɧɟɡɚɜɢɫɢɦɵɦɢ, ɚ ɢɦɟɧɧɨ, ɩɨ ɫɬɟɯɢɨɦɟɬ-                         ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ, ɜ ɤɨɬɨɪɵɯ ɜɟɳɟɫɬɜɚ ɩɟɪɟɯɨɞɹɬ ɞɪɭɝ ɜ ɞɪɭɝɚ ɩɨ ɰɟɩɨɱɤɟ
ɪɢɱɟɫɤɨɦɭ ɡɚɤɨɧɭ (I.2)                                                                        ɩɪɟɜɪɚɳɟɧɢɣ.
                                 CA – CA0 = CB – CB0.                                            Ɋɚɫɫɦɨɬɪɢɦ ɞɜɟ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɵɟ ɪɟɚɤɰɢɢ, ɢɞɭ-
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ (I.8) ɩɪɢɜɨɞɢɬɫɹ ɤ ɜɢɞɭ:                                                        ɳɢɟ ɩɨ ɫɯɟɦɟ:
                            C A kC A (CB0  C A0  C A ) .                                                                 A' I ' B .
                                                                                                                                        1    2
ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɭɠɟ ɧɟɥɶɡɹ ɪɟɲɢɬɶ ɩɪɹɦɵɦ ɢɧɬɟɝɪɢɪɨɜɚɧɢ-                            ȼɟɳɟɫɬɜɨ I, ɨɛɪɚɡɭɸɳɟɟɫɹ ɜ ɩɟɪɜɨɣ ɪɟɚɤɰɢɢ A ĺ I ɢ ɪɚɫɯɨɞɭɸɳɟɟɫɹ ɜɨ ɜɬɨ-
ɟɦ. Ɍɚɤɢɟ ɭɪɚɜɧɟɧɢɹ ɪɟɲɚɸɬ ɦɟɬɨɞɨɦ ɜɚɪɢɚɰɢɢ ɩɪɨɢɡɜɨɥɶɧɨɣ ɩɨɫɬɨɹɧɧɨɣ.                          ɪɨɣ I ĺ B, ɧɚɡɵɜɚɸɬ ɩɪɨɦɟɠɭɬɨɱɧɵɦ. ɋɥɟɞɭɟɬ ɩɨɞɱɟɪɤɧɭɬɶ: ɩɨɞɨɛɧɚɹ ɪɟ-
Ɉɞɧɚɤɨ ɨɧɨ ɭɩɪɨɳɚɟɬɫɹ ɢ ɫɜɨɞɢɬɫɹ ɤ ɭɪɚɜɧɟɧɢɸ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟ-                           ɚɤɰɢɨɧɧɚɹ ɫɯɟɦɚ ɧɟ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɫɧɚɱɚɥɚ ɡɚɜɟɪɲɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 1, ɚ ɩɨ-
ɦɟɧɧɵɦɢ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ CA0 = CB0:                                                             ɫɥɟ ɬɨɝɨ ɧɚɱɢɧɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 2. Ʉɚɤ ɬɨɥɶɤɨ ɜ ɫɢɫɬɟɦɟ ɩɨɹɜɢɬɫɹ ɜɟɳɟɫɬɜɨ
                                     C A kC A2 .                                            I, ɨɧɨ ɜɫɬɭɩɚɟɬ ɜ ɫɥɟɞɭɸɳɭɸ ɪɟɚɤɰɢɸ, ɢ ɨɛɚ ɩɪɨɰɟɫɫɚ ɢɞɭɬ ɨɞɧɨɜɪɟɦɟɧɧɨ.
                                                                                                  Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɤɢɧɟɬɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ ɞɥɹ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ A
ȼɵɱɢɫɥɹɹ ɢɧɬɟɝɪɚɥ ɢ ɩɪɢɦɟɧɹɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ, ɩɨɥɭɱɢɦ:
                                                                                              ɢ ɮɢɧɚɥɶɧɨɝɨ ɩɪɨɞɭɤɬɚ B ɢɦɟɸɬ ɜɢɞ:
                                                     C A0                                                                C A k1C A , C B k2CI ,
                                     C A (W)                  .
                                                  1  kC A0 W                                 ɝɞɟ k1 ɢ k2 – ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɟɣ ɩɟɪɜɨɣ ɢ ɜɬɨɪɨɣ ɪɟɚɤɰɢɣ. Ɋɟɲɟɧɢɟ ɩɟɪ-
ɗɬɨ ɦɨɧɨɬɨɧɧɨ ɭɛɵɜɚɸɳɚɹ ɮɭɧɤɰɢɹ, ɢɦɟɸɳɚɹ ɩɪɟɞɟɥ ɩɪɢ W ĺ f, ɪɚɜɧɵɣ 0.                         ɜɨɝɨ ɭɪɚɜɧɟɧɢɹ ɧɟ ɜɵɡɵɜɚɟɬ ɡɚɬɪɭɞɧɟɧɢɣ: ɨɧɨ ɭɠɟ ɩɨɥɭɱɟɧɨ ɩɨɞ ɧɨɦɟɪɨɦ
                                                                                              (I.7-1). ɑɬɨɛɵ ɪɟɲɢɬɶ ɜɬɨɪɨɟ ɭɪɚɜɧɟɧɢɟ ɬɪɟɛɭɟɬɫɹ ɡɧɚɬɶ ɮɭɧɤɰɢɸ CI(W), ɩɨ
    ɂɧɬɟɪɟɫɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɫɨɝɥɚɫɧɨ ɜɵɜɟɞɟɧɧɵɦ ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɪɚɜɧɟɧɢɹɦ ɡɚɜɢɫɢ-               ɤɨɬɨɪɨɣ ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ. Ⱦɥɹ ɷɬɨɣ ɩɨ-
ɦɨɫɬɢ Ci(W) ɧɟ ɞɨɫɬɢɝɚɸɬ ɫɜɨɟɣ ɧɢɠɧɟɣ ɝɪɚɧɢ – ɧɭɥɹ. ɗɬɨ ɞɨɥɠɧɨ ɨɡɧɚɱɚɬɶ, ɱɬɨ ɩɪɟ-
ɜɪɚɳɚɸɳɟɟɫɹ ɜɟɳɟɫɬɜɨ ɧɢɤɨɝɞɚ ɧɟ ɢɫɱɟɪɩɚɟɬɫɹ, ɚ ɫɚɦɚ ɪɟɚɤɰɢɹ ɧɢɤɨɝɞɚ ɧɟ ɡɚɤɨɧɱɢɬɫɹ.
                                                                                              ɫɥɟɞɧɟɣ ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ:
Ʉɚɠɟɬɫɹ, ɱɬɨ ɷɬɨ ɹɜɧɨ ɩɪɨɬɢɜɨɪɟɱɢɬ ɧɚɛɥɸɞɟɧɢɹɦ ɢ ɡɞɪɚɜɨɦɭ ɫɦɵɫɥɭ. Ⱦɟɥɨ ɠɟ ɨɛɫɬɨɢɬ                                       C I v1  v2 k1C A  k2CI .
ɬɚɤ. ȼɨ-ɩɟɪɜɵɯ, ɤɚɤ ɦɵ ɭɜɢɞɢɦ ɞɚɥɟɟ, ɜɫɟ ɪɟɚɤɰɢɢ ɹɜɥɹɸɬɫɹ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ              ɉɨɞɫɬɚɜɥɹɹ ɫɸɞɚ ɮɭɧɤɰɢɸ (I.7-1), ɩɨɥɭɱɢɦ:
ɨɛɪɚɬɢɦɵɦɢ, ɢ ɮɢɧɚɥɨɦ ɩɪɨɰɟɫɫɚ ɛɭɞɟɬ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ, ɜ ɤɨɬɨɪɨɦ ɤɨɧɰɟɧɬɪɚ-
ɰɢɢ ɜɫɟɯ ɜɟɳɟɫɬɜ (ɢ ɢɫɯɨɞɧɵɯ ɢ ɩɪɨɞɭɤɬɨɜ) ɨɬɥɢɱɧɵ ɨɬ ɧɭɥɹ. ȼɨ-ɜɬɨɪɵɯ, ɟɫɥɢ ɪɟɚɤɰɢɹ                                          C I  k2CI k1C A0 e  k1W .
ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɚ, ɬɨ ɧɚɛɥɸɞɚɟɦɵɣ «ɦɨɦɟɧɬ» ɡɚɜɟɪɲɟɧɢɹ ɪɟɚɤɰɢɢ ɫɨɜɩɚɞɚɟɬ ɫ                ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ, ɫɨɞɟɪɠɚɳɟɟ ɹɜɧɭɸ ɮɭɧɤɰɢɸ ɜɪɟɦɟɧɢ ɜ ɩɪɚ-
ɬɟɦ ɦɨɦɟɧɬɨɦ (Wf), ɤɨɝɞɚ ɜ ɫɢɫɬɟɦɟ ɩɟɪɟɫɬɚɟɬ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ ɜɟɳɟɫɬɜɨ. ɗɬɨ ɫɨɫɬɨɹɧɢɟ           ɜɨɣ ɱɚɫɬɢ, ɢɦɟɟɬ ɪɟɲɟɧɢɟ
ɧɚɫɬɭɩɢɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ CA ɫɬɚɧɟɬ ɦɟɧɶɲɟ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɢ ɩɪɢɛɨɪɚ GCA, ɢɡɦɟ-
                                                                                                                                         k1
ɪɹɸɳɟɝɨ ɷɬɭ ɤɨɧɰɟɧɬɪɚɰɢɸ. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ                                                                 CI (W) C A0              e  k1W  e  k2W       (I.9)
                                            1 C         0
                                                        A                                                                              k2  k1
                                        Wf · ln    .
                                            k GC A                                            ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ CI|W = 0 = 0. Ɍɨɝɞɚ ɞɥɹ ɩɪɨɞɭɤɬɚ ɪɟɚɤɰɢɢ B ɩɨɫɥɟ ɩɨɞ-
ɇɚɩɪɢɦɟɪ, ɟɫɥɢ ɩɟɪɢɨɞ ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W1/2 = 10 ɫ, ɚ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ GCA = 10–5 ɦɨɥɶeɥ, ɬɨ   ɫɬɚɧɨɜɤɢ (I.9) ɜ ɢɫɯɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɟɝɨ ɧɚɤɨɩɥɟɧɢɹ ɢɦɟɟɦ:
Wf · 166 ɫ ɩɪɢ ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ 1 ɦɨɥɶeɥ.                                                                                      k1k2
                                                                                                                      C B   C A0           e  k1W  e  k2W .
                                                                                                                                    k2  k1

                                             13                                                                                        14