ВУЗ:
Составители:
Рубрика:
v(W) = kC
A
0
e
–kW
.
ɉɨɫɬɚɜɥɟɧɧɚɹ ɡɚɞɚɱɚ ɩɨɥɧɨɫɬɶɸ ɪɟɲɟɧɚ.
2. Ɋɚɫɫɦɨɬɪɢɦ ɬɟɩɟɪɶ ɛɢɦɨɥɟɤɭɥɹɪɧɭɸ ɪɟɚɤɰɢɸ ɬɢɩɚ (11):
A + B ĺ ɩɪɨɞɭɤɬɵ.
Ɉɫɧɨɜɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɢɦɟɟɬ ɜɢɞ:
A
AB
CCC
k (I.8)
ɫ ɧɚɱɚɥɶɧɵɦ ɭɫɥɨɜɢɟɦ
C
A
|
W = 0
= C
A
0
ɢ C
B
|
W = 0
= C
B
0
. ɉɨ ɨɩɪɟɞɟɥɟɧɢɸ ɫɤɨɪɨ-
ɫɬɢ (I.4) ɭɪɚɜɧɟɧɢɟ (I.8) ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɤɚɤ ɨɬɧɨɫɢɬɟɥɶɧɨ
C
A
, ɬɚɤ ɢ ɨɬɧɨ-
ɫɢɬɟɥɶɧɨ
C
B
ɜ ɥɟɜɨɣ ɱɚɫɬɢ.
Ɏɭɧɤɰɢɢ C
A
ɢ C
B
ɧɟ ɹɜɥɹɸɬɫɹ ɧɟɡɚɜɢɫɢɦɵɦɢ, ɚ ɢɦɟɧɧɨ, ɩɨ ɫɬɟɯɢɨɦɟɬ-
ɪɢɱɟɫɤɨɦɭ ɡɚɤɨɧɭ (I.2)
C
A
– C
A
0
= C
B
– C
B
0
.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ (I.8) ɩɪɢɜɨɞɢɬɫɹ ɤ ɜɢɞɭ:
00
()
A
AB A A
CCCCC
k .
ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɭɠɟ ɧɟɥɶɡɹ ɪɟɲɢɬɶ ɩɪɹɦɵɦ ɢɧɬɟɝɪɢɪɨɜɚɧɢ-
ɟɦ. Ɍɚɤɢɟ ɭɪɚɜɧɟɧɢɹ ɪɟɲɚɸɬ ɦɟɬɨɞɨɦ ɜɚɪɢɚɰɢɢ ɩɪɨɢɡɜɨɥɶɧɨɣ ɩɨɫɬɨɹɧɧɨɣ.
Ɉɞɧɚɤɨ ɨɧɨ ɭɩɪɨɳɚɟɬɫɹ ɢ ɫɜɨɞɢɬɫɹ ɤ ɭɪɚɜɧɟɧɢɸ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟ-
ɦɟɧɧɵɦɢ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ
C
A
0
= C
B
0
:
2
A
A
CC
k .
ȼɵɱɢɫɥɹɹ ɢɧɬɟɝɪɚɥ ɢ ɩɪɢɦɟɧɹɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ, ɩɨɥɭɱɢɦ:
0
0
()
1
A
A
A
C
C
C
W
Wk
.
ɗɬɨ ɦɨɧɨɬɨɧɧɨ ɭɛɵɜɚɸɳɚɹ ɮɭɧɤɰɢɹ, ɢɦɟɸɳɚɹ ɩɪɟɞɟɥ ɩɪɢ W ĺ f, ɪɚɜɧɵɣ 0.
ɂɧɬɟɪɟɫɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɫɨɝɥɚɫɧɨ ɜɵɜɟɞɟɧɧɵɦ ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɪɚɜɧɟɧɢɹɦ ɡɚɜɢɫɢ-
ɦɨɫɬɢ C
i
(W) ɧɟ ɞɨɫɬɢɝɚɸɬ ɫɜɨɟɣ ɧɢɠɧɟɣ ɝɪɚɧɢ – ɧɭɥɹ. ɗɬɨ ɞɨɥɠɧɨ ɨɡɧɚɱɚɬɶ, ɱɬɨ ɩɪɟ-
ɜɪɚɳɚɸɳɟɟɫɹ ɜɟɳɟɫɬɜɨ ɧɢɤɨɝɞɚ ɧɟ ɢɫɱɟɪɩɚɟɬɫɹ, ɚ ɫɚɦɚ ɪɟɚɤɰɢɹ ɧɢɤɨɝɞɚ ɧɟ ɡɚɤɨɧɱɢɬɫɹ.
Ʉɚɠɟɬɫɹ, ɱɬɨ ɷɬɨ ɹɜɧɨ ɩɪɨɬɢɜɨɪɟɱɢɬ ɧɚɛɥɸɞɟɧɢɹɦ ɢ ɡɞɪɚɜɨɦɭ ɫɦɵɫɥɭ. Ⱦɟɥɨ ɠɟ ɨɛɫɬɨɢɬ
ɬɚɤ. ȼɨ-ɩɟɪɜɵɯ, ɤɚɤ ɦɵ ɭɜɢɞɢɦ ɞɚɥɟɟ, ɜɫɟ ɪɟɚɤɰɢɢ ɹɜɥɹɸɬɫɹ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ
ɨɛɪɚɬɢɦɵɦɢ, ɢ ɮɢɧɚɥɨɦ ɩɪɨɰɟɫɫɚ ɛɭɞɟɬ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ, ɜ ɤɨɬɨɪɨɦ ɤɨɧɰɟɧɬɪɚ-
ɰɢɢ ɜɫɟɯ ɜɟɳɟɫɬɜ (ɢ ɢɫɯɨɞɧɵɯ ɢ ɩɪɨɞɭɤɬɨɜ) ɨɬɥɢɱɧɵ ɨɬ ɧɭɥɹ. ȼɨ-ɜɬɨɪɵɯ, ɟɫɥɢ ɪɟɚɤɰɢɹ
ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɚ, ɬɨ ɧɚɛɥɸɞɚɟɦɵɣ «ɦɨɦɟɧɬ» ɡɚɜɟɪɲɟɧɢɹ ɪɟɚɤɰɢɢ ɫɨɜɩɚɞɚɟɬ ɫ
ɬɟɦ ɦɨɦɟɧɬɨɦ (W
f
), ɤɨɝɞɚ ɜ ɫɢɫɬɟɦɟ ɩɟɪɟɫɬɚɟɬ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ ɜɟɳɟɫɬɜɨ. ɗɬɨ ɫɨɫɬɨɹɧɢɟ
ɧɚɫɬɭɩɢɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ C
A
ɫɬɚɧɟɬ ɦɟɧɶɲɟ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɢ ɩɪɢɛɨɪɚ GC
A
, ɢɡɦɟ-
ɪɹɸɳɟɝɨ ɷɬɭ ɤɨɧɰɟɧɬɪɚɰɢɸ. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ
0
1
ln
A
A
C
C
f
W
G
k
·
.
ɇɚɩɪɢɦɟɪ, ɟɫɥɢ ɩɟɪɢɨɞ ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W
1/2
= 10 ɫ, ɚ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ GC
A
= 10
–5 ɦɨɥɶ
e
ɥ
, ɬɨ
W
f
· 166 ɫ ɩɪɢ ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ 1
ɦɨɥɶ
e
ɥ
.
13
6. ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ
Ʉɚɤ ɦɵ ɨɬɦɟɱɚɥɢ, ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ ɢɞɭɬ ɧɟ ɨɞɧɨɚɤɬɧɨ, ɚɜɧɟ-
ɫɤɨɥɶɤɨ ɫɬɚɞɢɣ. ȼɨɡɦɨɠɧɵ ɩɪɨɰɟɫɫɵ, ɪɚɡɜɢɜɚɸɳɢɟɫɹ ɫɪɚɡɭ ɩɨ ɞɜɭɦ ɢɥɢ
ɧɟɫɤɨɥɶɤɢɦ ɩɭɬɹɦ. ɇɚɩɪɢɦɟɪ,
.
Ɍɚɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɡɵɜɚɸɬ ɩɚɪɚɥɥɟɥɶɧɵɦɢ. Ⱦɪɭɝɨɣ ɬɢɩ ɫɥɨɠɧɵɯ ɪɟɚɤɰɢɣ –
ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ, ɜ ɤɨɬɨɪɵɯ ɜɟɳɟɫɬɜɚ ɩɟɪɟɯɨɞɹɬ ɞɪɭɝ ɜ ɞɪɭɝɚ ɩɨ ɰɟɩɨɱɤɟ
ɩɪɟɜɪɚɳɟɧɢɣ.
Ɋɚɫɫɦɨɬɪɢɦ ɞɜɟ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɵɟ ɪɟɚɤɰɢɢ, ɢɞɭ-
ɳɢɟ ɩɨ ɫɯɟɦɟ:
12
A
IB'' .
ȼɟɳɟɫɬɜɨ I, ɨɛɪɚɡɭɸɳɟɟɫɹ ɜ ɩɟɪɜɨɣ ɪɟɚɤɰɢɢ A ĺ I ɢ ɪɚɫɯɨɞɭɸɳɟɟɫɹ ɜɨ ɜɬɨ-
ɪɨɣ I ĺ B, ɧɚɡɵɜɚɸɬ ɩɪɨɦɟɠɭɬɨɱɧɵɦ. ɋɥɟɞɭɟɬ ɩɨɞɱɟɪɤɧɭɬɶ: ɩɨɞɨɛɧɚɹ ɪɟ-
ɚɤɰɢɨɧɧɚɹ ɫɯɟɦɚ ɧɟ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɫɧɚɱɚɥɚ ɡɚɜɟɪɲɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 1, ɚɩɨ-
ɫɥɟ ɬɨɝɨ ɧɚɱɢɧɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 2. Ʉɚɤ ɬɨɥɶɤɨ ɜ ɫɢɫɬɟɦɟ ɩɨɹɜɢɬɫɹ ɜɟɳɟɫɬɜɨ
I, ɨɧɨ ɜɫɬɭɩɚɟɬ ɜ ɫɥɟɞɭɸɳɭɸ ɪɟɚɤɰɢɸ, ɢ ɨɛɚ ɩɪɨɰɟɫɫɚ ɢɞɭɬ ɨɞɧɨɜɪɟɦɟɧɧɨ.
Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɤɢɧɟɬɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ ɞɥɹ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ A
ɢ ɮɢɧɚɥɶɧɨɝɨ ɩɪɨɞɭɤɬɚ B ɢɦɟɸɬ ɜɢɞ:
1
A
A
CC
k ,,
2BI
CC k
ɝɞɟ k
1
ɢ k
2
– ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɟɣ ɩɟɪɜɨɣ ɢ ɜɬɨɪɨɣ ɪɟɚɤɰɢɣ. Ɋɟɲɟɧɢɟ ɩɟɪ-
ɜɨɝɨ ɭɪɚɜɧɟɧɢɹ ɧɟ ɜɵɡɵɜɚɟɬ ɡɚɬɪɭɞɧɟɧɢɣ: ɨɧɨ ɭɠɟ ɩɨɥɭɱɟɧɨ ɩɨɞ ɧɨɦɟɪɨɦ
(I.7-1). ɑɬɨɛɵ ɪɟɲɢɬɶ ɜɬɨɪɨɟ ɭɪɚɜɧɟɧɢɟ ɬɪɟɛɭɟɬɫɹ ɡɧɚɬɶ ɮɭɧɤɰɢɸ C
I
(W), ɩɨ
ɤɨɬɨɪɨɣ ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ. Ⱦɥɹ ɷɬɨɣ ɩɨ-
ɫɥɟɞɧɟɣ ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ:
12 1 2
I
AI
CC vv k k
C .
ɉɨɞɫɬɚɜɥɹɹ ɫɸɞɚ ɮɭɧɤɰɢɸ (I.7-1), ɩɨɥɭɱɢɦ:
1
0
21IIA
CCCe
W
k
kk
.
ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ, ɫɨɞɟɪɠɚɳɟɟ ɹɜɧɭɸ ɮɭɧɤɰɢɸ ɜɪɟɦɟɧɢ ɜ ɩɪɚ-
ɜɨɣ ɱɚɫɬɢ, ɢɦɟɟɬ ɪɟɲɟɧɢɟ
1
0
1
21
()
IA
CC ee
2
WW
W
kk
k
kk
(I.9)
ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ C
I
|
W = 0
= 0. Ɍɨɝɞɚ ɞɥɹ ɩɪɨɞɭɤɬɚ ɪɟɚɤɰɢɢ B ɩɨɫɥɟ ɩɨɞ-
ɫɬɚɧɨɜɤɢ (I.9) ɜ ɢɫɯɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɟɝɨ ɧɚɤɨɩɥɟɧɢɹ ɢɦɟɟɦ:
12
0
12
21
BA
CC e e
WW
kk
kk
kk
.
14
v(W) = kCA0e–kW. 6. ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɪɟɚɤɰɢɢ ɉɨɫɬɚɜɥɟɧɧɚɹ ɡɚɞɚɱɚ ɩɨɥɧɨɫɬɶɸ ɪɟɲɟɧɚ. Ʉɚɤ ɦɵ ɨɬɦɟɱɚɥɢ, ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ ɢɞɭɬ ɧɟ ɨɞɧɨɚɤɬɧɨ, ɚ ɜ ɧɟ- 2. Ɋɚɫɫɦɨɬɪɢɦ ɬɟɩɟɪɶ ɛɢɦɨɥɟɤɭɥɹɪɧɭɸ ɪɟɚɤɰɢɸ ɬɢɩɚ (11): ɫɤɨɥɶɤɨ ɫɬɚɞɢɣ. ȼɨɡɦɨɠɧɵ ɩɪɨɰɟɫɫɵ, ɪɚɡɜɢɜɚɸɳɢɟɫɹ ɫɪɚɡɭ ɩɨ ɞɜɭɦ ɢɥɢ A + B ĺ ɩɪɨɞɭɤɬɵ. ɧɟɫɤɨɥɶɤɢɦ ɩɭɬɹɦ. ɇɚɩɪɢɦɟɪ, Ɉɫɧɨɜɧɨɟ ɤɢɧɟɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɢɦɟɟɬ ɜɢɞ: C A kC ACB (I.8) . 0 0 ɫ ɧɚɱɚɥɶɧɵɦ ɭɫɥɨɜɢɟɦ CA|W = 0 = CA ɢ CB|W = 0 = CB . ɉɨ ɨɩɪɟɞɟɥɟɧɢɸ ɫɤɨɪɨ- ɫɬɢ (I.4) ɭɪɚɜɧɟɧɢɟ (I.8) ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɤɚɤ ɨɬɧɨɫɢɬɟɥɶɧɨ CA, ɬɚɤ ɢ ɨɬɧɨ- ɫɢɬɟɥɶɧɨ CB ɜ ɥɟɜɨɣ ɱɚɫɬɢ. Ɍɚɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɡɵɜɚɸɬ ɩɚɪɚɥɥɟɥɶɧɵɦɢ. Ⱦɪɭɝɨɣ ɬɢɩ ɫɥɨɠɧɵɯ ɪɟɚɤɰɢɣ – Ɏɭɧɤɰɢɢ CA ɢ CB ɧɟ ɹɜɥɹɸɬɫɹ ɧɟɡɚɜɢɫɢɦɵɦɢ, ɚ ɢɦɟɧɧɨ, ɩɨ ɫɬɟɯɢɨɦɟɬ- ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ, ɜ ɤɨɬɨɪɵɯ ɜɟɳɟɫɬɜɚ ɩɟɪɟɯɨɞɹɬ ɞɪɭɝ ɜ ɞɪɭɝɚ ɩɨ ɰɟɩɨɱɤɟ ɪɢɱɟɫɤɨɦɭ ɡɚɤɨɧɭ (I.2) ɩɪɟɜɪɚɳɟɧɢɣ. CA – CA0 = CB – CB0. Ɋɚɫɫɦɨɬɪɢɦ ɞɜɟ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɟ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɵɟ ɪɟɚɤɰɢɢ, ɢɞɭ- Ɍɚɤɢɦ ɨɛɪɚɡɨɦ (I.8) ɩɪɢɜɨɞɢɬɫɹ ɤ ɜɢɞɭ: ɳɢɟ ɩɨ ɫɯɟɦɟ: C A kC A (CB0 C A0 C A ) . A' I ' B . 1 2 ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɭɠɟ ɧɟɥɶɡɹ ɪɟɲɢɬɶ ɩɪɹɦɵɦ ɢɧɬɟɝɪɢɪɨɜɚɧɢ- ȼɟɳɟɫɬɜɨ I, ɨɛɪɚɡɭɸɳɟɟɫɹ ɜ ɩɟɪɜɨɣ ɪɟɚɤɰɢɢ A ĺ I ɢ ɪɚɫɯɨɞɭɸɳɟɟɫɹ ɜɨ ɜɬɨ- ɟɦ. Ɍɚɤɢɟ ɭɪɚɜɧɟɧɢɹ ɪɟɲɚɸɬ ɦɟɬɨɞɨɦ ɜɚɪɢɚɰɢɢ ɩɪɨɢɡɜɨɥɶɧɨɣ ɩɨɫɬɨɹɧɧɨɣ. ɪɨɣ I ĺ B, ɧɚɡɵɜɚɸɬ ɩɪɨɦɟɠɭɬɨɱɧɵɦ. ɋɥɟɞɭɟɬ ɩɨɞɱɟɪɤɧɭɬɶ: ɩɨɞɨɛɧɚɹ ɪɟ- Ɉɞɧɚɤɨ ɨɧɨ ɭɩɪɨɳɚɟɬɫɹ ɢ ɫɜɨɞɢɬɫɹ ɤ ɭɪɚɜɧɟɧɢɸ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟ- ɚɤɰɢɨɧɧɚɹ ɫɯɟɦɚ ɧɟ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɫɧɚɱɚɥɚ ɡɚɜɟɪɲɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 1, ɚ ɩɨ- ɦɟɧɧɵɦɢ, ɟɫɥɢ ɩɨɥɨɠɢɬɶ CA0 = CB0: ɫɥɟ ɬɨɝɨ ɧɚɱɢɧɚɟɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟ 2. Ʉɚɤ ɬɨɥɶɤɨ ɜ ɫɢɫɬɟɦɟ ɩɨɹɜɢɬɫɹ ɜɟɳɟɫɬɜɨ C A kC A2 . I, ɨɧɨ ɜɫɬɭɩɚɟɬ ɜ ɫɥɟɞɭɸɳɭɸ ɪɟɚɤɰɢɸ, ɢ ɨɛɚ ɩɪɨɰɟɫɫɚ ɢɞɭɬ ɨɞɧɨɜɪɟɦɟɧɧɨ. Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɤɢɧɟɬɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ ɞɥɹ ɢɫɯɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ A ȼɵɱɢɫɥɹɹ ɢɧɬɟɝɪɚɥ ɢ ɩɪɢɦɟɧɹɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ, ɩɨɥɭɱɢɦ: ɢ ɮɢɧɚɥɶɧɨɝɨ ɩɪɨɞɭɤɬɚ B ɢɦɟɸɬ ɜɢɞ: C A0 C A k1C A , C B k2CI , C A (W) . 1 kC A0 W ɝɞɟ k1 ɢ k2 – ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɟɣ ɩɟɪɜɨɣ ɢ ɜɬɨɪɨɣ ɪɟɚɤɰɢɣ. Ɋɟɲɟɧɢɟ ɩɟɪ- ɗɬɨ ɦɨɧɨɬɨɧɧɨ ɭɛɵɜɚɸɳɚɹ ɮɭɧɤɰɢɹ, ɢɦɟɸɳɚɹ ɩɪɟɞɟɥ ɩɪɢ W ĺ f, ɪɚɜɧɵɣ 0. ɜɨɝɨ ɭɪɚɜɧɟɧɢɹ ɧɟ ɜɵɡɵɜɚɟɬ ɡɚɬɪɭɞɧɟɧɢɣ: ɨɧɨ ɭɠɟ ɩɨɥɭɱɟɧɨ ɩɨɞ ɧɨɦɟɪɨɦ (I.7-1). ɑɬɨɛɵ ɪɟɲɢɬɶ ɜɬɨɪɨɟ ɭɪɚɜɧɟɧɢɟ ɬɪɟɛɭɟɬɫɹ ɡɧɚɬɶ ɮɭɧɤɰɢɸ CI(W), ɩɨ ɂɧɬɟɪɟɫɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɫɨɝɥɚɫɧɨ ɜɵɜɟɞɟɧɧɵɦ ɤɢɧɟɬɢɱɟɫɤɢɦ ɭɪɚɜɧɟɧɢɹɦ ɡɚɜɢɫɢ- ɤɨɬɨɪɨɣ ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɨɦɟɠɭɬɨɱɧɨɝɨ ɜɟɳɟɫɬɜɚ. Ⱦɥɹ ɷɬɨɣ ɩɨ- ɦɨɫɬɢ Ci(W) ɧɟ ɞɨɫɬɢɝɚɸɬ ɫɜɨɟɣ ɧɢɠɧɟɣ ɝɪɚɧɢ – ɧɭɥɹ. ɗɬɨ ɞɨɥɠɧɨ ɨɡɧɚɱɚɬɶ, ɱɬɨ ɩɪɟ- ɜɪɚɳɚɸɳɟɟɫɹ ɜɟɳɟɫɬɜɨ ɧɢɤɨɝɞɚ ɧɟ ɢɫɱɟɪɩɚɟɬɫɹ, ɚ ɫɚɦɚ ɪɟɚɤɰɢɹ ɧɢɤɨɝɞɚ ɧɟ ɡɚɤɨɧɱɢɬɫɹ. ɫɥɟɞɧɟɣ ɦɨɠɟɦ ɡɚɩɢɫɚɬɶ: Ʉɚɠɟɬɫɹ, ɱɬɨ ɷɬɨ ɹɜɧɨ ɩɪɨɬɢɜɨɪɟɱɢɬ ɧɚɛɥɸɞɟɧɢɹɦ ɢ ɡɞɪɚɜɨɦɭ ɫɦɵɫɥɭ. Ⱦɟɥɨ ɠɟ ɨɛɫɬɨɢɬ C I v1 v2 k1C A k2CI . ɬɚɤ. ȼɨ-ɩɟɪɜɵɯ, ɤɚɤ ɦɵ ɭɜɢɞɢɦ ɞɚɥɟɟ, ɜɫɟ ɪɟɚɤɰɢɢ ɹɜɥɹɸɬɫɹ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ ɉɨɞɫɬɚɜɥɹɹ ɫɸɞɚ ɮɭɧɤɰɢɸ (I.7-1), ɩɨɥɭɱɢɦ: ɨɛɪɚɬɢɦɵɦɢ, ɢ ɮɢɧɚɥɨɦ ɩɪɨɰɟɫɫɚ ɛɭɞɟɬ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ, ɜ ɤɨɬɨɪɨɦ ɤɨɧɰɟɧɬɪɚ- ɰɢɢ ɜɫɟɯ ɜɟɳɟɫɬɜ (ɢ ɢɫɯɨɞɧɵɯ ɢ ɩɪɨɞɭɤɬɨɜ) ɨɬɥɢɱɧɵ ɨɬ ɧɭɥɹ. ȼɨ-ɜɬɨɪɵɯ, ɟɫɥɢ ɪɟɚɤɰɢɹ C I k2CI k1C A0 e k1W . ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɨɛɪɚɬɢɦɚ, ɬɨ ɧɚɛɥɸɞɚɟɦɵɣ «ɦɨɦɟɧɬ» ɡɚɜɟɪɲɟɧɢɹ ɪɟɚɤɰɢɢ ɫɨɜɩɚɞɚɟɬ ɫ ɗɬɨ ɧɟɨɞɧɨɪɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ, ɫɨɞɟɪɠɚɳɟɟ ɹɜɧɭɸ ɮɭɧɤɰɢɸ ɜɪɟɦɟɧɢ ɜ ɩɪɚ- ɬɟɦ ɦɨɦɟɧɬɨɦ (Wf), ɤɨɝɞɚ ɜ ɫɢɫɬɟɦɟ ɩɟɪɟɫɬɚɟɬ ɨɛɧɚɪɭɠɢɜɚɬɶɫɹ ɜɟɳɟɫɬɜɨ. ɗɬɨ ɫɨɫɬɨɹɧɢɟ ɜɨɣ ɱɚɫɬɢ, ɢɦɟɟɬ ɪɟɲɟɧɢɟ ɧɚɫɬɭɩɢɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ CA ɫɬɚɧɟɬ ɦɟɧɶɲɟ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɢ ɩɪɢɛɨɪɚ GCA, ɢɡɦɟ- k1 ɪɹɸɳɟɝɨ ɷɬɭ ɤɨɧɰɟɧɬɪɚɰɢɸ. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ CI (W) C A0 e k1W e k2W (I.9) 1 C 0 A k2 k1 Wf · ln . k GC A ɩɪɢ ɧɚɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ CI|W = 0 = 0. Ɍɨɝɞɚ ɞɥɹ ɩɪɨɞɭɤɬɚ ɪɟɚɤɰɢɢ B ɩɨɫɥɟ ɩɨɞ- ɇɚɩɪɢɦɟɪ, ɟɫɥɢ ɩɟɪɢɨɞ ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W1/2 = 10 ɫ, ɚ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ GCA = 10–5 ɦɨɥɶeɥ, ɬɨ ɫɬɚɧɨɜɤɢ (I.9) ɜ ɢɫɯɨɞɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɟɝɨ ɧɚɤɨɩɥɟɧɢɹ ɢɦɟɟɦ: Wf · 166 ɫ ɩɪɢ ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ 1 ɦɨɥɶeɥ. k1k2 C B C A0 e k1W e k2W . k2 k1 13 14
Страницы
- « первая
- ‹ предыдущая
- …
- 5
- 6
- 7
- 8
- 9
- …
- следующая ›
- последняя »