Химическая кинетика. Наумов А.В. - 6 стр.

UptoLike

Составители: 

Рубрика: 

ɉɟɪɜɚɹ ɹɜɥɹɟɬɫɹ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ, ɨɫɬɚɥɶɧɵɟɛɢɦɨɥɟɤɭɥɹɪɧɵɦɢ. ɉɨ-
ɞɨɛɧɵɣ ɦɟɯɚɧɢɡɦ ɧɚɡɵɜɚɟɬɫɹ
ɰɟɩɧɵɦ.
ɉɪɚɜɢɥɨ ɨɝɪɚɧɢɱɟɧɢɹ ɦɨɥɟɤɭɥɹɪɧɨɫɬɢ ɩɨ ɜɟɪɨɹɬɧɨ-
ɫɬɢ
ɩɪɢɜɨɞɢɬ ɤ ɜɵɜɨɞɭ, ɱɬɨ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɜ ɮɨɪɦɟ (I.6) ɫɩɪɚ-
ɜɟɞɥɢɜ ɞɥɹ ɩɪɨɫɬɨɣ ɪɟɚɤɰɢɢ, ɢ, ɜ ɱɚɫɬɧɨɫɬɢ, ɟɫɥɢ . Ⱦɥɹ ɫɥɨɠɧɵɯ
ɪɟɚɤɰɢɣ ɷɬɨɬ ɡɚɤɨɧ, ɫɬɪɨɝɨ ɝɨɜɨɪɹ, ɧɟɩɪɢɦɟɧɢɦ. Ɍɟɦ ɧɟ ɦɟɧɟɟ ɜ ɛɨɥɶɲɨɦ
ɱɢɫɥɟ ɫɥɭɱɚɟɜ ɭɞɚɟɬɫɹ ɫɨɯɪɚɧɢɬɶ ɫɬɟɩɟɧɧýɸ ɮɨɪɦɭ ɡɚɤɨɧɚ, ɜɜɟɞɹ ɜ ɧɟɝɨ
ɷɦɩɢɪɢɱɟɫɤɢɟ ɩɨɩɪɚɜɤɢ. ɉɨɩɪɚɜɤɢ ɫɨɫɬɨɹɬ ɜ ɡɚɦɟɧɟ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɢɯ
ɤɨɷɮɮɢɰɢɟɧɬɨɜ Q
1
3
m
i
i
¦Q
i
ɧɟɤɨɬɨɪɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ p
i
, ɬɚɤ ɱɬɨ
1
i
m
p
i
i
C
vk .
ɉɚɪɚɦɟɬɪɵ
p
i
ɧɚɡɵɜɚɸɬ ɩɨɪɹɞɤɚɦɢ ɩɨ ɪɟɚɝɟɧɬɚɦ, ɚ ɫɭɦɦɭ ɷɬɢɯ ɱɢɫɟɥ
ɨɛɳɢɦ
ɩɨɪɹɞɤɨɦ ɪɟɚɤɰɢɢ. ɉɨɪɹɞɤɢ, ɨɩɪɟɞɟɥɹɟɦɵɟ ɫɭɝɭɛɨ ɷɤɫɩɟɪɢɦɟɧ-
ɬɚɥɶɧɨ, ɦɨɝɭɬ ɛɵɬɶ ɧɟɰɟɥɵɦɢ ɢ ɞɚɠɟ ɨɬɪɢɰɚɬɟɥɶɧɵɦɢ ɱɢɫɥɚɦɢ. Ɂɚ ɤɨɧ-
ɫɬɚɧɬɨɣ ɫɤɨɪɨɫɬɢ ɜ ɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɦ ɡɚɤɨɧɟ ɫɨɯɪɚɧɹɟɬɫɹ ɜ ɰɟɥɨɦ ɟɟ ɩɟɪ-
ɜɨɧɚɱɚɥɶɧɵɣ ɫɦɵɫɥ, ɯɨɬɹ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɟɟ ɩɪɟɞɩɨɱɢɬɚɸɬ ɧɚɡɵɜɚɬɶ
ɷɮɮɟɤ-
ɬɢɜɧɨɣ
ɤɨɧɫɬɚɧɬɨɣ.
ɂɡɜɟɫɬɧɵ ɪɟɚɤɰɢɢ, ɫɤɨɪɨɫɬɶ ɤɨɬɨɪɵɯ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɚɤɨɝɨ-ɥɢɛɨ ɪɟɚ-
ɝɟɧɬɚ (p
i
= 0) – ɪɟɚɤɰɢɢ ɧɭɥɟɜɨɝɨ ɩɨɪɹɞɤɚ. ȿɫɥɢ ɫɭɦɦɚɪɧɵɣ ɩɨɪɹɞɨɤ ɪɚɜɟɧ ɧɭɥɸ, ɬɨ ɷɬɨ,
ɤɚɤ ɪɚɡ, ɬɨɬ ɫɥɭɱɚɣ, ɤɨɝɞɚ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɩɨɫɬɨɹɧɧɚ.
5. Ʉɢɧɟɬɢɤɚ ɧɟɤɨɬɨɪɵɯ ɩɪɨɫɬɵɯ ɪɟɚɤɰɢɣ
Ɂɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɩɨɡɜɨɥɹɟɬ ɪɟɲɢɬɶ ɨɫɧɨɜɧɭɸ ɡɚɞɚɱɭ ɤɢɧɟɬɢɤɢ.
ɉɨɤɚɠɟɦ, ɤɚɤ ɷɬɨ ɩɪɨɢɫɯɨɞɢɬ ɧɚ ɞɜɭɯ ɩɪɢɦɟɪɚɯ.
1. ɉɪɢɦɟɪ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ ɪɟɚɤɰɢɢ, ɩɪɟɞɫɬɚɜɥɹɸɳɟɣ ɫɨɛɨɣ ɪɚɫɩɚɞ
ɦɨɥɟɤɭɥ ɜɟɳɟɫɬɜɚ
A:
A ĺ ɩɪɨɞɭɤɬɵ.
ɉɨɫɤɨɥɶɤɭ ɜ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɜɯɨɞɹɬ ɬɨɥɶɤɨ ɤɨɧɰɟɧɬɪɚɰɢɢ ɢɫɯɨɞ-
ɧɵɯ ɜɟɳɟɫɬɜ (ɜ ɧɚɲɟɦ ɫɥɭɱɚɟ ɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ
A), ɯɚɪɚɤɬɟɪ ɩɪɨɞɭɤɬɨɜ ɧɚɦ
ɧɟ ɜɚɠɟɧ.
ɇɚ ɫɚɦɨɦ ɞɟɥɟ ɩɨɞɨɛɧɵɟ ɪɟɚɤɰɢɢ ɜɫɟɝɞɚ ɹɜɥɹɸɬɫɹ ɛɢɦɨɥɟɤɭɥɹɪɧɵɦɢ. ɂɯ ɦɟɯɚɧɢɡɦ
ɫɨɫɬɨɢɬ ɜ ɚɤɬɢɜɚɰɢɢ (ɫɦ. ɞɚɥɟɟ, ɩ. 8) ɱɚɫɬɢɰɵ A ɤɚɤɨɣ-ɥɢɛɨ ɞɪɭɝɨɣ ɱɚɫɬɢɰɟɣ, ɧɚɩɪɢɦɟɪ,
ɜɬɨɪɨɣ ɱɚɫɬɢɰɟɣ A:
A + A ĺ AA* ɢɥɢ A + A ĺ A* + A.
ȼɬɨɪɚɹ ɫɯɟɦɚ ɨɡɧɚɱɚɟɬ ɫɬɨɥɤɧɨɜɟɧɢɟ ɢ ɪɚɡɥɟɬ ɱɚɫɬɢɰ, ɩɪɢɱɟɦ ɨɞɧɚ ɢɡ ɧɢɯ ɩɟɪɟɯɨɞɢɬ ɜ ɜɨɡ-
ɛɭɠɞɟɧɧɨɟ (ɚɤɬɢɜɢɪɨɜɚɧɧɨɟ) ɫɨɫɬɨɹɧɢɟ A*, ɧɚɩɪɢɦɟɪ, ɡɚ ɫɱɟɬ ɩɨɝɥɨɳɟɧɢɹ ɱɚɫɬɢ ɩɨɫɬɭɩɚ-
ɬɟɥɶɧɨɣ ɷɧɟɪɝɢɢ ɞɪɭɝɨɣ ɱɚɫɬɢɰɵ. Ⱦɚɥɟɟ ɧɚɫɬɭɩɚɟɬ ɪɚɫɩɚɞ ɚɤɬɢɜɢɪɨɜɚɧɧɨɣ ɱɚɫɬɢɰɵ:
11
AA* ĺ ɩɪɨɞɭɤɬɵ + A, A* ĺ ɩɪɨɞɭɤɬɵ.
ȼɨɡɛɭɠɞɟɧɢɟ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɡɚ ɫɱɟɬ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɨɥɟɤɭɥɵ ɫ ɢɡɥɭɱɟɧɢɟɦ. Ɍɚɤ
ɢɧɢɰɢɢɪɭɟɬɫɹ, ɧɚɩɪɢɦɟɪ, ɰɟɩɧɚɹ ɪɟɚɤɰɢɹ ɨɛɪɚɡɨɜɚɧɢɹ ɯɥɨɪɢɫɬɨɝɨ ɜɨɞɨɪɨɞɚ, ɩɪɢɜɟɞɟɧ-
ɧɚɹ ɧɚ ɫɬɪ. 11:
Cl
2
+ hQ ĺ Cl
2
* ĺ Cl + Cl.
Ɉɩɢɫɚɧɢɟ, ɤɨɬɨɪɨɟ ɦɵ ɞɚɞɢɦ ɫɟɣɱɚɫ, ɹɜɥɹɟɬɫɹ ɩɪɢɛɥɢɠɟɧɧɵɦ ɢ ɩɪɢɦɟɧɢɦɨ, ɤɨɝɞɚ
ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɚɫɩɚɞɚ ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɚ.
ɂɬɚɤ, ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɛɭɞɟɬ, ɫɨɝɥɚɫɧɨ (I.6), ɢɦɟɬɶ ɜɢɞ:
A
A
CC
k .
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟɦɟɧɧɵɦɢ ɧɭɠɧɨ ɪɟɲɢɬɶ ɩɪɢ ɧɚ-
ɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ
C
A
|
W = 0
= C
A
0
. ɍɫɥɨɜɢɟ ɜɵɪɚɠɚɟɬ ɩɪɨɫɬɨɣ ɮɚɤɬ, ɱɬɨ ɜ ɧɚ-
ɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ, ɤɨɝɞɚ ɧɚɱɚɥɢ ɫɥɟɞɢɬɶ ɡɚ ɫɢɫɬɟɦɨɣ, ɜɟɳɟɫɬɜɨ ɫɨ-
ɞɟɪɠɚɥɨɫɶ ɜ ɤɨɧɰɟɧɬɪɚɰɢɢ
C
A
0
. Ɋɚɡɞɟɥɹɹ ɩɟɪɟɦɟɧɧɵɟ ɢ ɢɧɬɟɝɪɢɪɭɹ, ɩɨɥɭ-
ɱɢɦ:
const
A
A
dC
d
C
Wk
y
y
, ɬɨ ɟɫɬɶ ln C
A
= – kW + const.
ɇɟɨɩɪɟɞɟɥɟɧɧɭɸ ɤɨɧɫɬɚɧɬɭ (const) ɧɚɣɞɟɦ, ɢɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ.
ɉɨɫɥɟ ɨɱɟɜɢɞɧɵɯ ɩɪɟɨɛɪɚɡɨɜɚɧɢɣ ɛɭɞɟɦ ɢɦɟɬɶ:
C
A
(W) = C
A
0
e
kW
. (I.7-1)
ɉɟɪɟɞ ɧɚɦɢ ɤɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ.
Ɉɬɫɸɞɚ ɜɢɞɧɨ, ɱɬɨ ɤɢɧɟɬɢɤɚ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ,
ɤɨɧɫɬɚɧɬɨɣ ɫɤɨɪɨɫɬɢ. ȿɫɥɢ ɤɨɧɫɬɚɧɬɚ ɦɚɥɚ, ɩɪɨɰɟɫɫ ɦɨɠɟɬ ɛɵɬɶ ɱɪɟɡɜɵ-
ɱɚɣɧɨ ɦɟɞɥɟɧɧɵɦ; ɟɫɥɢ ɜɟɥɢɤɚɩɪɚɤɬɢɱɟɫɤɢ ɦɝɧɨɜɟɧɧɵɦ. ȼɜɨɞɹɬ ɬɚɤ ɧɚ-
ɡɵɜɚɟɦɨɟ
ɜɪɟɦɹ (ɩɟɪɢɨɞ) ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W
1/2
ɜɪɟɦɹ, ɡɚ ɤɨɬɨɪɨɟ ɜɟɳɟɫɬ-
ɜɨ ɪɚɫɩɚɞɟɬɫɹ ɧɚɩɨɥɨɜɢɧɭ:
C
A
(W
1/2
) =
1
e
2
C
A
0
. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ
ɨɧɨ ɫɜɹɡɚɧɨ ɬɨɥɶɤɨ ɫ ɤɨɧɫɬɚɧɬɨɣ:
1/2
ln 2
W
k
.
Ɉɩɪɟɞɟɥɹɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɩɟɪɢɨɞ W
1/2
, ɦɨɠɧɨ ɧɚɣɬɢ ɤɨɧɫɬɚɧɬɭ ɫɤɨɪɨɫɬɢ.
ɉɭɫɬɶ ɬɟɩɟɪɶ ɩɪɨɞɭɤɬɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɞɜɚ «ɨɫɤɨɥɤɚ» ɦɨɥɟɤɭɥɵ
A,
ɬɨ ɟɫɬɶ ɩɪɨɰɟɫɫ ɢɦɟɟɬ ɜɢɞ:
A ĺ BB
1
+ B
2
B .
Ʉɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ ɞɥɹ C
A
ɧɟ ɢɡɦɟɧɢɬɫɹ. Ⱦɥɹ ɩɪɨɞɭɤɬɨɜ BB
j
ɟɝɨ ɧɟɫɥɨɠɧɨ
ɧɚɣɬɢ ɩɨ ɫɬɟɯɢɨɦɟɬɪɢɢ. ȼɨ-ɩɟɪɜɵɯ, ɹɫɧɨ, ɱɬɨ
C
B
1
= C
B
2
ɜ ɥɸɛɨɣ ɦɨɦɟɧɬ W.
ȼɨ-ɜɬɨɪɵɯ,
C
B
j
= C
A
0
C
A
, ɩɨɷɬɨɦɭ
C
B
j
(W) = C
A
0
(1 – e
kW
). (I.7-2)
ɇɚɤɨɧɟɰ, ɞɥɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɨɥɭɱɢɦ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɡɚɬɭɯɚɸ-
ɳɢɣ ɡɚɤɨɧ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɪɟɦɟɧɢ:
12
ɉɟɪɜɚɹ ɹɜɥɹɟɬɫɹ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ, ɨɫɬɚɥɶɧɵɟ – ɛɢɦɨɥɟɤɭɥɹɪɧɵɦɢ. ɉɨ-                                             AA* ĺ ɩɪɨɞɭɤɬɵ + A,         A* ĺ ɩɪɨɞɭɤɬɵ.
ɞɨɛɧɵɣ ɦɟɯɚɧɢɡɦ ɧɚɡɵɜɚɟɬɫɹ ɰɟɩɧɵɦ.
                                                                                          ȼɨɡɛɭɠɞɟɧɢɟ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɡɚ ɫɱɟɬ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɨɥɟɤɭɥɵ ɫ ɢɡɥɭɱɟɧɢɟɦ. Ɍɚɤ
    ɉɪɚɜɢɥɨ ɨ ɝ ɪ ɚ ɧ ɢ ɱ ɟ ɧ ɢ ɹ ɦ ɨ ɥ ɟ ɤ ɭ ɥ ɹ ɪ ɧ ɨ ɫ ɬ ɢ ɩ ɨ ɜ ɟ ɪ ɨ ɹ ɬ ɧ ɨ -       ɢɧɢɰɢɢɪɭɟɬɫɹ, ɧɚɩɪɢɦɟɪ, ɰɟɩɧɚɹ ɪɟɚɤɰɢɹ ɨɛɪɚɡɨɜɚɧɢɹ ɯɥɨɪɢɫɬɨɝɨ ɜɨɞɨɪɨɞɚ, ɩɪɢɜɟɞɟɧ-
ɫ ɬ ɢ ɩɪɢɜɨɞɢɬ ɤ ɜɵɜɨɞɭ, ɱɬɨ ɡɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɜ ɮɨɪɦɟ (I.6) ɫɩɪɚ-                   ɧɚɹ ɧɚ ɫɬɪ. 11:
                                                               m
ɜɟɞɥɢɜ ɞɥɹ ɩɪɨɫɬɨɣ ɪɟɚɤɰɢɢ, ɢ, ɜ ɱɚɫɬɧɨɫɬɢ, ɟɫɥɢ ¦ Q i ¶ 3 . Ⱦɥɹ ɫɥɨɠɧɵɯ                                                Cl2 + hQ ĺ Cl2* ĺ Cl + Cl.
                                                               i 1
ɪɟɚɤɰɢɣ ɷɬɨɬ ɡɚɤɨɧ, ɫɬɪɨɝɨ ɝɨɜɨɪɹ, ɧɟɩɪɢɦɟɧɢɦ. Ɍɟɦ ɧɟ ɦɟɧɟɟ ɜ ɛɨɥɶɲɨɦ                         Ɉɩɢɫɚɧɢɟ, ɤɨɬɨɪɨɟ ɦɵ ɞɚɞɢɦ ɫɟɣɱɚɫ, ɹɜɥɹɟɬɫɹ ɩɪɢɛɥɢɠɟɧɧɵɦ ɢ ɩɪɢɦɟɧɢɦɨ, ɤɨɝɞɚ
ɱɢɫɥɟ ɫɥɭɱɚɟɜ ɭɞɚɟɬɫɹ ɫɨɯɪɚɧɢɬɶ ɫɬɟɩɟɧɧýɸ ɮɨɪɦɭ ɡɚɤɨɧɚ, ɜɜɟɞɹ ɜ ɧɟɝɨ                      ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɚɫɩɚɞɚ ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɚ.
ɷɦɩɢɪɢɱɟɫɤɢɟ ɩɨɩɪɚɜɤɢ. ɉɨɩɪɚɜɤɢ ɫɨɫɬɨɹɬ ɜ ɡɚɦɟɧɟ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɢɯ
ɤɨɷɮɮɢɰɢɟɧɬɨɜ Qi ɧɟɤɨɬɨɪɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ pi, ɬɚɤ ɱɬɨ                                          ɂɬɚɤ, ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɛɭɞɟɬ, ɫɨɝɥɚɫɧɨ (I.6), ɢɦɟɬɶ ɜɢɞ:
                                               m
                                                                                                                            C A kC A .
                                       v k – Cipi .
                                               i 1                                        ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɫ ɪɚɡɞɟɥɹɸɳɢɦɢɫɹ ɩɟɪɟɦɟɧɧɵɦɢ ɧɭɠɧɨ ɪɟɲɢɬɶ ɩɪɢ ɧɚ-
ɉɚɪɚɦɟɬɪɵ pi ɧɚɡɵɜɚɸɬ ɩɨɪɹɞɤɚɦɢ ɩɨ ɪɟɚɝɟɧɬɚɦ, ɚ ɫɭɦɦɭ ɷɬɢɯ ɱɢɫɟɥ –                        ɱɚɥɶɧɨɦ ɭɫɥɨɜɢɢ CA|W = 0 = CA0. ɍɫɥɨɜɢɟ ɜɵɪɚɠɚɟɬ ɩɪɨɫɬɨɣ ɮɚɤɬ, ɱɬɨ ɜ ɧɚ-
ɨɛɳɢɦ ɩɨɪɹɞɤɨɦ ɪɟɚɤɰɢɢ. ɉɨɪɹɞɤɢ, ɨɩɪɟɞɟɥɹɟɦɵɟ ɫɭɝɭɛɨ ɷɤɫɩɟɪɢɦɟɧ-                          ɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ, ɤɨɝɞɚ ɧɚɱɚɥɢ ɫɥɟɞɢɬɶ ɡɚ ɫɢɫɬɟɦɨɣ, ɜɟɳɟɫɬɜɨ ɫɨ-
ɬɚɥɶɧɨ, ɦɨɝɭɬ ɛɵɬɶ ɧɟɰɟɥɵɦɢ ɢ ɞɚɠɟ ɨɬɪɢɰɚɬɟɥɶɧɵɦɢ ɱɢɫɥɚɦɢ. Ɂɚ ɤɨɧ-                        ɞɟɪɠɚɥɨɫɶ ɜ ɤɨɧɰɟɧɬɪɚɰɢɢ CA0. Ɋɚɡɞɟɥɹɹ ɩɟɪɟɦɟɧɧɵɟ ɢ ɢɧɬɟɝɪɢɪɭɹ, ɩɨɥɭ-
ɫɬɚɧɬɨɣ ɫɤɨɪɨɫɬɢ ɜ ɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɦ ɡɚɤɨɧɟ ɫɨɯɪɚɧɹɟɬɫɹ ɜ ɰɟɥɨɦ ɟɟ ɩɟɪ-                    ɱɢɦ:
ɜɨɧɚɱɚɥɶɧɵɣ ɫɦɵɫɥ, ɯɨɬɹ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɟɟ ɩɪɟɞɩɨɱɢɬɚɸɬ ɧɚɡɵɜɚɬɶ ɷɮɮɟɤ-                                  dC A
ɬɢɜɧɨɣ ɤɨɧɫɬɚɧɬɨɣ.                                                                                   y         k d W  const , ɬɨ ɟɫɬɶ ln CA = – kW + const.
                                                                                                                  y
                                                                                                       CA
    ɂɡɜɟɫɬɧɵ ɪɟɚɤɰɢɢ, ɫɤɨɪɨɫɬɶ ɤɨɬɨɪɵɯ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɚɤɨɝɨ-ɥɢɛɨ ɪɟɚ-        ɇɟɨɩɪɟɞɟɥɟɧɧɭɸ ɤɨɧɫɬɚɧɬɭ (const) ɧɚɣɞɟɦ, ɢɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɨɟ ɭɫɥɨɜɢɟ.
ɝɟɧɬɚ (pi = 0) – ɪɟɚɤɰɢɢ ɧɭɥɟɜɨɝɨ ɩɨɪɹɞɤɚ. ȿɫɥɢ ɫɭɦɦɚɪɧɵɣ ɩɨɪɹɞɨɤ ɪɚɜɟɧ ɧɭɥɸ, ɬɨ ɷɬɨ,     ɉɨɫɥɟ ɨɱɟɜɢɞɧɵɯ ɩɪɟɨɛɪɚɡɨɜɚɧɢɣ ɛɭɞɟɦ ɢɦɟɬɶ:
ɤɚɤ ɪɚɡ, ɬɨɬ ɫɥɭɱɚɣ, ɤɨɝɞɚ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɩɨɫɬɨɹɧɧɚ.                                                                    CA(W) = CA0e–kW.                  (I.7-1)
                                                                                          ɉɟɪɟɞ ɧɚɦɢ ɤɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ.
                  5. Ʉɢɧɟɬɢɤɚ ɧɟɤɨɬɨɪɵɯ ɩɪɨɫɬɵɯ ɪɟɚɤɰɢɣ                                      Ɉɬɫɸɞɚ ɜɢɞɧɨ, ɱɬɨ ɤɢɧɟɬɢɤɚ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ,
                                                                                          ɤɨɧɫɬɚɧɬɨɣ ɫɤɨɪɨɫɬɢ. ȿɫɥɢ ɤɨɧɫɬɚɧɬɚ ɦɚɥɚ, ɩɪɨɰɟɫɫ ɦɨɠɟɬ ɛɵɬɶ ɱɪɟɡɜɵ-
   Ɂɚɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ ɩɨɡɜɨɥɹɟɬ ɪɟɲɢɬɶ ɨɫɧɨɜɧɭɸ ɡɚɞɚɱɭ ɤɢɧɟɬɢɤɢ.                      ɱɚɣɧɨ ɦɟɞɥɟɧɧɵɦ; ɟɫɥɢ ɜɟɥɢɤɚ – ɩɪɚɤɬɢɱɟɫɤɢ ɦɝɧɨɜɟɧɧɵɦ. ȼɜɨɞɹɬ ɬɚɤ ɧɚ-
ɉɨɤɚɠɟɦ, ɤɚɤ ɷɬɨ ɩɪɨɢɫɯɨɞɢɬ ɧɚ ɞɜɭɯ ɩɪɢɦɟɪɚɯ.                                             ɡɵɜɚɟɦɨɟ ɜɪɟɦɹ (ɩɟɪɢɨɞ) ɩɨɥɭɩɪɟɜɪɚɳɟɧɢɹ W1/2 – ɜɪɟɦɹ, ɡɚ ɤɨɬɨɪɨɟ ɜɟɳɟɫɬ-
   1. ɉɪɢɦɟɪ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ ɪɟɚɤɰɢɢ, ɩɪɟɞɫɬɚɜɥɹɸɳɟɣ ɫɨɛɨɣ ɪɚɫɩɚɞ                        ɜɨ ɪɚɫɩɚɞɟɬɫɹ ɧɚɩɨɥɨɜɢɧɭ: CA(W1/2) = 1e2CA0. Ⱦɥɹ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ
ɦɨɥɟɤɭɥ ɜɟɳɟɫɬɜɚ A:                                                                       ɨɧɨ ɫɜɹɡɚɧɨ ɬɨɥɶɤɨ ɫ ɤɨɧɫɬɚɧɬɨɣ:
                              A ĺ ɩɪɨɞɭɤɬɵ.
                                                                                                                                           ln 2
ɉɨɫɤɨɥɶɤɭ ɜ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɜɯɨɞɹɬ ɬɨɥɶɤɨ ɤɨɧɰɟɧɬɪɚɰɢɢ ɢɫɯɨɞ-
                                                                                                                               W1/ 2            .
                                                                                                                                            k
ɧɵɯ ɜɟɳɟɫɬɜ (ɜ ɧɚɲɟɦ ɫɥɭɱɚɟ ɨɞɧɨɝɨ ɜɟɳɟɫɬɜɚ A), ɯɚɪɚɤɬɟɪ ɩɪɨɞɭɤɬɨɜ ɧɚɦ                    Ɉɩɪɟɞɟɥɹɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɩɟɪɢɨɞ W1/2, ɦɨɠɧɨ ɧɚɣɬɢ ɤɨɧɫɬɚɧɬɭ ɫɤɨɪɨɫɬɢ.
ɧɟ ɜɚɠɟɧ.                                                                                     ɉɭɫɬɶ ɬɟɩɟɪɶ ɩɪɨɞɭɤɬɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɞɜɚ «ɨɫɤɨɥɤɚ» ɦɨɥɟɤɭɥɵ A,
    ɇɚ ɫɚɦɨɦ ɞɟɥɟ ɩɨɞɨɛɧɵɟ ɪɟɚɤɰɢɢ ɜɫɟɝɞɚ ɹɜɥɹɸɬɫɹ ɛɢɦɨɥɟɤɭɥɹɪɧɵɦɢ. ɂɯ ɦɟɯɚɧɢɡɦ
                                                                                          ɬɨ ɟɫɬɶ ɩɪɨɰɟɫɫ ɢɦɟɟɬ ɜɢɞ:
ɫɨɫɬɨɢɬ ɜ ɚɤɬɢɜɚɰɢɢ (ɫɦ. ɞɚɥɟɟ, ɩ. 8) ɱɚɫɬɢɰɵ A ɤɚɤɨɣ-ɥɢɛɨ ɞɪɭɝɨɣ ɱɚɫɬɢɰɟɣ, ɧɚɩɪɢɦɟɪ,                                        A ĺ B1 + B2.
                                                                                                                                       B       B




ɜɬɨɪɨɣ ɱɚɫɬɢɰɟɣ A:                                                                        Ʉɢɧɟɬɢɱɟɫɤɢɣ ɡɚɤɨɧ ɞɥɹ CA ɧɟ ɢɡɦɟɧɢɬɫɹ. Ⱦɥɹ ɩɪɨɞɭɤɬɨɜ Bj ɟɝɨ ɧɟɫɥɨɠɧɨ
                                                                                                                                                            B




                                                                                          ɧɚɣɬɢ ɩɨ ɫɬɟɯɢɨɦɟɬɪɢɢ. ȼɨ-ɩɟɪɜɵɯ, ɹɫɧɨ, ɱɬɨ CB1 = CB2 ɜ ɥɸɛɨɣ ɦɨɦɟɧɬ W.
                           A + A ĺ AA* ɢɥɢ           A + A ĺ A* + A.
                                                                                          ȼɨ-ɜɬɨɪɵɯ, CBj = CA0 – CA, ɩɨɷɬɨɦɭ
ȼɬɨɪɚɹ ɫɯɟɦɚ ɨɡɧɚɱɚɟɬ ɫɬɨɥɤɧɨɜɟɧɢɟ ɢ ɪɚɡɥɟɬ ɱɚɫɬɢɰ, ɩɪɢɱɟɦ ɨɞɧɚ ɢɡ ɧɢɯ ɩɟɪɟɯɨɞɢɬ ɜ ɜɨɡ-                                  CBj(W) = CA0(1 – e–kW).             (I.7-2)
ɛɭɠɞɟɧɧɨɟ (ɚɤɬɢɜɢɪɨɜɚɧɧɨɟ) ɫɨɫɬɨɹɧɢɟ A*, ɧɚɩɪɢɦɟɪ, ɡɚ ɫɱɟɬ ɩɨɝɥɨɳɟɧɢɹ ɱɚɫɬɢ ɩɨɫɬɭɩɚ-
ɬɟɥɶɧɨɣ ɷɧɟɪɝɢɢ ɞɪɭɝɨɣ ɱɚɫɬɢɰɵ. Ⱦɚɥɟɟ ɧɚɫɬɭɩɚɟɬ ɪɚɫɩɚɞ ɚɤɬɢɜɢɪɨɜɚɧɧɨɣ ɱɚɫɬɢɰɵ:                ɇɚɤɨɧɟɰ, ɞɥɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɨɥɭɱɢɦ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɡɚɬɭɯɚɸ-
                                                                                          ɳɢɣ ɡɚɤɨɧ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɪɟɦɟɧɢ:

                                          11                                                                                      12