Химическая кинетика. Наумов А.В. - 9 стр.

UptoLike

Составители: 

Рубрика: 

ɟɟ ɮɢɡɢɱɟɫɤɢɣ ɫɦɵɫɥ ɫɬɚɧɟɬ ɹɫɟɧ ɩɨɡɞɧɟɟ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ
ɫɨɫɬɚɜɥɹɟɬ ɨɬ 50 ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɫɨɬɟɧ
ɤȾɠ
e
ɦɨɥɶ
.
Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ k(T) ɩɨ ɭɪɚɜɧɟɧɢɸ Ⱥɪɪɟɧɢɭɫɚ ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫ. 2.
ɇɚ ɧɟɦ ɜ ɤɚɱɟɫɬɜɟ ɤɨɨɪɞɢɧɚɬ ɢɫɩɨɥɶɡɨɜɚɧɵ ɛɟɡɪɚɡɦɟɪɧɵɟ ɨɬɧɨɲɟɧɢɹ k/k
0
ɢ T/T
a
, ɝɞɟ T
a
= E
a
/Rɬɚɤ ɧɚɡɵɜɚɟɦɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɚɤɬɢɜɚɰɢɢ. Ɂɚɜɢɫɢɦɨɫɬɶ
ɛɵɫɬɪɨ ɜɨɡɪɚɫɬɚɟɬ ɧɚ ɧɚɱɚɥɶɧɨɦ ɭɱɚɫɬɤɟ ɢ ɢɦɟɟɬ ɩɟɪɟɝɢɛ ɩɪɢ T =
1
e
2
T
a
. ȿɫ-
ɥɢ E
a
= 50
ɤȾɠ
e
ɦɨɥɶ
, ɬɨ ɬɟɦɩɟɪɚɬɭɪɚ ɩɟɪɟɝɢɛɚ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 3000 Ʉ. ɉɨ-
ɷɬɨɦɭ ɨɛɵɱɧɵɟ ɭɫɥɨɜɢɹ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ,
ɩɪɢɯɨɞɹɬɫɹ ɧɚ ɛɵɫɬɪɨɜɨɡɪɚɫɬɚɸɳɭɸ ɱɚɫɬɶ. ɋɜɟɪɯɭ ɮɭɧɤɰɢɹ (I.12) ɨɝɪɚɧɢ-
ɱɟɧɚ ɩɪɟɞɟɥɨɦ
00
lim
a
TT
T
e
f
kk
'
.
Ɋɢɫ. 2 Ɋɢɫ. 3
ɗɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ, ɫ ɨɞɧɨɣ ɫɬɨɪɨ-
ɧɵ ɨɩɪɟɞɟɥɹɸɳɟɣ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ, ɫ ɞɪɭɝɨɣɩɪɢɧ-
ɰɢɩɢɚɥɶɧɵɦ ɨɛɪɚɡɨɦ ɫɜɹɡɚɧɧɨɣ ɫ ɦɟɯɚɧɢɡɦɨɦ ɪɟɚɤɰɢɢ. ɉɨɷɬɨɦɭ ɜ ɷɤɫɩɟ-
ɪɢɦɟɧɬɚɥɶɧɨɣ ɯɢɦɢɢ ɨɱɟɧɶ ɜɚɠɧɨ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɣ ɚɤɬɢɜɚɰɢɢ ɪɚɡɥɢɱ-
ɧɵɯ ɪɟɚɤɰɢɣ. Ɉɛɵɱɧɨ ɞɥɹ ɷɬɨɝɨ ɩɪɢɦɟɧɹɟɬɫɹ ɫɥɟɞɭɸɳɢɣ ɩɪɢɟɦ. ɍɪɚɜɧɟ-
ɧɢɟ (I.12) ɩɨɫɥɟ ɥɨɝɚɪɢɮɦɢɪɨɜɚɧɢɹ ɦɨɠɧɨ ɩɟɪɟɩɢɫɚɬɶ ɜ ɜɢɞɟ:
0
1
ln ln
a
E
RT
kk
.
ȿɫɥɢ ɡɚɦɟɧɢɬɶ ɩɟɪɟɦɟɧɧɵɟ y = ln k, x = 1/T, ɬɨ ɭɪɚɜɧɟɧɢɟ ɫɬɚɧɟɬ ɥɢɧɟɣɧɵɦ:
a
E
R
yb x . Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜ ɧɨɜɵɯ ɤɨɨɪɞɢɧɚɬɚɯ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ
k(T) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɹɦɭɸ ɜɨ ɜɫɟɣ ɨɛɥɚɫɬɢ ɨɩɪɟɞɟɥɟɧɢɹ T > 0
(ɪɢɫ. 3). Ɉɩɪɟɞɟɥɹɹ ɟɟ ɩɚɪɚɦɟɬɪɵ ɥɟɝɤɨ ɜɵɱɢɫɥɢɬɶ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ
ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ k
0
. ɉɨɞɨɛɧɵɣ ɩɪɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɥɢɧɟɚ-
ɪɢɡɚɰɢɟɣ.
17
ɇɚɣɞɟɦ ɫɜɹɡɶ ɦɟɠɞɭ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ ɢ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ⱦɥɹ ɷɬɨɝɨ ɢɡ
ɮɨɪɦɭɥɵ (I.11) ɜɵɪɚɡɢɦ ɩɪɨɢɡɜɨɞɧɭɸ ɩɨ ɬɟɦɩɟɪɚɬɭɪɟ:
00
()() ()
lim ( ) lim
TT
dTTT T
T
dT T T
''
1' J '
''
kk k
k
''
.
ɉɪɟɞɟɥ
0
()1
lim
T
T
T
'
J'
'
J
'
ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɜɵɪɚɠɟɧɢɹ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɭ ɜɟ-
ɥɢɱɢɧɭ ɦɵ ɛɭɞɟɦ ɧɚɡɵɜɚɬɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ɉɬɫɸɞɚ
()
d
T
dT
J
k
k
ɢɥɢ ()
T
Tae
J
k (I.13)
ɩɨɫɥɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ (aɩɨɫɬɨɹɧɧɚɹ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ,
ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨ ɪɚɫɬɟɬ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ. ɋɜɹɡɶ ɦɟɠɞɭ ɞɢɮɮɟɪɟɧɰɢ-
ɚɥɶɧɵɦ ɢ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɢɦɟɟɬ ɜɢɞ:
()
()
()
T
TT
Te
T
J
'
'
J'
k
k
.
ɋ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ, ɞɢɮɮɟɪɟɧɰɢɪɭɹ ɭɪɚɜɧɟɧɢɟ Ⱥɪɪɟɧɢɭɫɚ, ɧɚɣɞɟɦ:
0
2
a
ERT
a
dE
e
dT RT
k
k
18
ɢɥɢ
2
a
dE
dT RT
k
k
. (I.14)
ɋɪɚɜɧɢɦ ɬɟɩɟɪɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɭɸ ɮɨɪɦɭ ɩɪɚ-
ɜɢɥɚ ȼɚɧɬ-Ƚɨɮɮɚ (I.13) ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ.
ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɭɪɚɜɧɟɧɢɹ (I.13) ɜ (I.14) ɩɨɥɭ-
ɱɚɟɬɫɹ, ɱɬɨ
J = E
a
/RT
2
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɧɟ ɹɜ-
ɥɹɟɬɫɹ ɫɬɪɨɝɨ ɩɨɫɬɨɹɧɧɵɦ. ɇɨ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵ-
ɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ (ɤɨɦɧɚɬɧɨɣ ɢ ɜɵɲɟ) ɜɟɥɢɱɢɧɚ
E
a
/RT
2
ɦɟɧɹɟɬɫɹ ɦɟɞɥɟɧɧɨ. ɗɬɨ ɢ ɩɪɢɜɨɞɢɬ ɤ ɩɪɢɛɥɢɠɟɧɧɨɦɭ ɜɵɩɨɥɧɟɧɢɸ ɩɪɚɜɢɥɚ
ȼɚɧɬ-Ƚɨɮɮɚ. ȿɫɥɢ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 50 ɞɨ 100 ɤȾɠ/ɦɨɥɶ, ɬɨ
10-ɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ J (10 Ʉ) ɨɫɬɚɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɬ 2 ɞɨ 4 ɩɪɢ 298 Ʉ. ɋɪɚɜɧɟ-
ɧɢɟ ɡɚɜɢɫɢɦɨɫɬɟɣ ɩɨ ȼɚɧɬ-Ƚɨɮɮɭ ɢ Ⱥɪɪɟɧɢɭɫɭ ɞɚɧɨ ɧɚ ɪɢɫ. 4.
Ɋɢɫ. 4
8. Ɉ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ
Ɇɵ ɩɪɢɞɟɪɠɢɜɚɟɦɫɹ ɬɚɤɨɝɨ ɜɡɝɥɹɞɚ ɧɚ ɷɥɟɦɟɧɬɚɪɧɵɣ ɚɤɬ ɪɟɚɤɰɢɢ, ɱɬɨ
ɨɧ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɧɚɦ ɩɪɨɢɫɯɨɞɹɳɢɦ ɜ ɦɨɦɟɧɬ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ. ɗɬɚ
ɬɨɱɤɚ ɡɪɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɨɛɨɫɧɨɜɚɬɶ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɭɫɬɚɧɨɜɥɟɧɧɵɣ ɡɚ-
ɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ, ɨɞɧɚɤɨ ɨɧɚ ɧɟ ɝɨɞɢɬɫɹ ɞɥɹ ɨɛɴɹɫɧɟɧɢɹ ɬɟɦɩɟɪɚ-
ɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɱɚɫɬɨɬɚ ɫɨɭɞɚɪɟɧɢɣ ɜɨɡɪɚɫ-
ɬɚɟɬ ɤɚɤ z
T
1/2
(ɮɨɪɦɭɥɚ (I.5)), ɬɨ ɟɫɬɶ ɦɟɧɹɟɬɫɹ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ ɞɨɜɨɥɶɧɨ
ɦɟɞɥɟɧɧɨ. ɋɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ, ɧɚɩɪɨɬɢɜ, ɨɱɟɧɶ ɪɟɡɤɨ ɡɚɜɢɫɢɬ ɨɬ T.
ɍɠɟ ɢɡ ɨɛɳɢɯ ɫɨɨɛɪɚɠɟɧɢɣ ɩɨɧɹɬɧɨ, ɱɬɨ ɧɟ ɤɚɠɞɨɟ ɫɬɨɥɤɧɨɜɟɧɢɟ ɩɪɢ-
ɜɨɞɢɬ ɤ ɪɟɚɝɢɪɨɜɚɧɢɸ ɱɚɫɬɢɰ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɫɤɨɪɨɫɬɶ, ɪɚɫɫɱɢɬɚɧɧɚɹ
ɟɟ ɮɢɡɢɱɟɫɤɢɣ ɫɦɵɫɥ ɫɬɚɧɟɬ ɹɫɟɧ ɩɨɡɞɧɟɟ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ        ɇɚɣɞɟɦ ɫɜɹɡɶ ɦɟɠɞɭ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ ɢ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ⱦɥɹ ɷɬɨɝɨ ɢɡ
ɫɨɫɬɚɜɥɹɟɬ ɨɬ 50 ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɫɨɬɟɧ ɤȾɠeɦɨɥɶ.                              ɮɨɪɦɭɥɵ (I.11) ɜɵɪɚɡɢɦ ɩɪɨɢɡɜɨɞɧɭɸ ɩɨ ɬɟɦɩɟɪɚɬɭɪɟ:
    Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ k(T) ɩɨ ɭɪɚɜɧɟɧɢɸ Ⱥɪɪɟɧɢɭɫɚ ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫ. 2.                              dk              k(T  'T )  k(T )                           J ('T )  1
                                                                                                            lim                                    k(T ) ˜ lim               .
ɇɚ ɧɟɦ ɜ ɤɚɱɟɫɬɜɟ ɤɨɨɪɞɢɧɚɬ ɢɫɩɨɥɶɡɨɜɚɧɵ ɛɟɡɪɚɡɦɟɪɧɵɟ ɨɬɧɨɲɟɧɢɹ k/k0                                dT      'T '0          'T                            'T '0       'T
ɢ T/Ta, ɝɞɟ Ta = Ea/R – ɬɚɤ ɧɚɡɵɜɚɟɦɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɚɤɬɢɜɚɰɢɢ. Ɂɚɜɢɫɢɦɨɫɬɶ                        J ( 'T )  1
                                                                            ɉɪɟɞɟɥ J     lim         ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɜɵɪɚɠɟɧɢɹ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɭ ɜɟ-
ɛɵɫɬɪɨ ɜɨɡɪɚɫɬɚɟɬ ɧɚ ɧɚɱɚɥɶɧɨɦ ɭɱɚɫɬɤɟ ɢ ɢɦɟɟɬ ɩɟɪɟɝɢɛ ɩɪɢ T = 1e2Ta. ȿɫ-                'T '0'T
ɥɢ Ea = 50 ɤȾɠeɦɨɥɶ, ɬɨ ɬɟɦɩɟɪɚɬɭɪɚ ɩɟɪɟɝɢɛɚ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 3000 Ʉ. ɉɨ-   ɥɢɱɢɧɭ ɦɵ ɛɭɞɟɦ ɧɚɡɵɜɚɬɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ɉɬɫɸɞɚ
ɷɬɨɦɭ ɨɛɵɱɧɵɟ ɭɫɥɨɜɢɹ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ,                                                  dk
                                                                                                                            Jk(T )     ɢɥɢ         k(T ) ae JT                   (I.13)
ɩɪɢɯɨɞɹɬɫɹ ɧɚ ɛɵɫɬɪɨɜɨɡɪɚɫɬɚɸɳɭɸ ɱɚɫɬɶ. ɋɜɟɪɯɭ ɮɭɧɤɰɢɹ (I.12) ɨɝɪɚɧɢ-                                               dT
ɱɟɧɚ ɩɪɟɞɟɥɨɦ                                                               ɩɨɫɥɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ (a – ɩɨɫɬɨɹɧɧɚɹ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ,
                                                                            ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨ ɪɚɫɬɟɬ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ. ɋɜɹɡɶ ɦɟɠɞɭ ɞɢɮɮɟɪɟɧɰɢ-
                                 k0 lim e Ta T k0 .                        ɚɥɶɧɵɦ ɢ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɢɦɟɟɬ ɜɢɞ:
                                  T 'f
                                                                                                                                     k(T  'T )
                                                                                                                       J ('T )                         e J'T .
                                                                                                                                        k(T )
                                                                                  ɋ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ, ɞɢɮɮɟɪɟɧɰɢɪɭɹ ɭɪɚɜɧɟɧɢɟ Ⱥɪɪɟɧɢɭɫɚ, ɧɚɣɞɟɦ:
                                                                                                   dk                       Ea
                                                                                                           k0e  Ea   RT

                                                                                                   dT                      RT 2
                                                                            ɢɥɢ
                                                                                                   dk            Ea
                                                                                                           k         .                    (I.14)
                                                                                                   dT           RT 2
                                                                            ɋɪɚɜɧɢɦ ɬɟɩɟɪɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɭɸ ɮɨɪɦɭ ɩɪɚ-
                                                                            ɜɢɥɚ ȼɚɧɬ-Ƚɨɮɮɚ (I.13) ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ.
                                                                            ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɭɪɚɜɧɟɧɢɹ (I.13) ɜ (I.14) ɩɨɥɭ-
                                                                            ɱɚɟɬɫɹ, ɱɬɨ
                                                                                                  J = Ea/RT2.
                                                                            ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɧɟ ɹɜ-
                  Ɋɢɫ. 2                                Ɋɢɫ. 3              ɥɹɟɬɫɹ ɫɬɪɨɝɨ ɩɨɫɬɨɹɧɧɵɦ. ɇɨ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵ-
                                                                            ɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ (ɤɨɦɧɚɬɧɨɣ ɢ ɜɵɲɟ) ɜɟɥɢɱɢɧɚ                 Ɋɢɫ. 4
   ɗɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ, ɫ ɨɞɧɨɣ ɫɬɨɪɨ-      Ea/RT2 ɦɟɧɹɟɬɫɹ ɦɟɞɥɟɧɧɨ. ɗɬɨ ɢ ɩɪɢɜɨɞɢɬ ɤ ɩɪɢɛɥɢɠɟɧɧɨɦɭ ɜɵɩɨɥɧɟɧɢɸ ɩɪɚɜɢɥɚ
ɧɵ ɨɩɪɟɞɟɥɹɸɳɟɣ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ, ɫ ɞɪɭɝɨɣ – ɩɪɢɧ-        ȼɚɧɬ-Ƚɨɮɮɚ. ȿɫɥɢ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 50 ɞɨ 100 ɤȾɠ/ɦɨɥɶ, ɬɨ
ɰɢɩɢɚɥɶɧɵɦ ɨɛɪɚɡɨɦ ɫɜɹɡɚɧɧɨɣ ɫ ɦɟɯɚɧɢɡɦɨɦ ɪɟɚɤɰɢɢ. ɉɨɷɬɨɦɭ ɜ ɷɤɫɩɟ-         10-ɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ J (10 Ʉ) ɨɫɬɚɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɬ 2 ɞɨ 4 ɩɪɢ 298 Ʉ. ɋɪɚɜɧɟ-
ɪɢɦɟɧɬɚɥɶɧɨɣ ɯɢɦɢɢ ɨɱɟɧɶ ɜɚɠɧɨ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɣ ɚɤɬɢɜɚɰɢɢ ɪɚɡɥɢɱ-        ɧɢɟ ɡɚɜɢɫɢɦɨɫɬɟɣ ɩɨ ȼɚɧɬ-Ƚɨɮɮɭ ɢ Ⱥɪɪɟɧɢɭɫɭ ɞɚɧɨ ɧɚ ɪɢɫ. 4.
ɧɵɯ ɪɟɚɤɰɢɣ. Ɉɛɵɱɧɨ ɞɥɹ ɷɬɨɝɨ ɩɪɢɦɟɧɹɟɬɫɹ ɫɥɟɞɭɸɳɢɣ ɩɪɢɟɦ. ɍɪɚɜɧɟ-
ɧɢɟ (I.12) ɩɨɫɥɟ ɥɨɝɚɪɢɮɦɢɪɨɜɚɧɢɹ ɦɨɠɧɨ ɩɟɪɟɩɢɫɚɬɶ ɜ ɜɢɞɟ:                                             8. Ɉ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ
                                             Ea 1
                              ln k ln k0      ˜ .                             Ɇɵ ɩɪɢɞɟɪɠɢɜɚɟɦɫɹ ɬɚɤɨɝɨ ɜɡɝɥɹɞɚ ɧɚ ɷɥɟɦɟɧɬɚɪɧɵɣ ɚɤɬ ɪɟɚɤɰɢɢ, ɱɬɨ
                                             R T                            ɨɧ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɧɚɦ ɩɪɨɢɫɯɨɞɹɳɢɦ ɜ ɦɨɦɟɧɬ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ. ɗɬɚ
ȿɫɥɢ ɡɚɦɟɧɢɬɶ ɩɟɪɟɦɟɧɧɵɟ y = ln k, x = 1/T, ɬɨ ɭɪɚɜɧɟɧɢɟ ɫɬɚɧɟɬ ɥɢɧɟɣɧɵɦ:   ɬɨɱɤɚ ɡɪɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɨɛɨɫɧɨɜɚɬɶ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɭɫɬɚɧɨɜɥɟɧɧɵɣ ɡɚ-
         Ea                                                                 ɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ, ɨɞɧɚɤɨ ɨɧɚ ɧɟ ɝɨɞɢɬɫɹ ɞɥɹ ɨɛɴɹɫɧɟɧɢɹ ɬɟɦɩɟɪɚ-
y   b        x . Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜ ɧɨɜɵɯ ɤɨɨɪɞɢɧɚɬɚɯ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ
         R                                                                  ɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɱɚɫɬɨɬɚ ɫɨɭɞɚɪɟɧɢɣ ɜɨɡɪɚɫ-
k(T) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɹɦɭɸ ɜɨ ɜɫɟɣ ɨɛɥɚɫɬɢ ɨɩɪɟɞɟɥɟɧɢɹ T > 0            ɬɚɟɬ ɤɚɤ z  T1/2 (ɮɨɪɦɭɥɚ (I.5)), ɬɨ ɟɫɬɶ ɦɟɧɹɟɬɫɹ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ ɞɨɜɨɥɶɧɨ
(ɪɢɫ. 3). Ɉɩɪɟɞɟɥɹɹ ɟɟ ɩɚɪɚɦɟɬɪɵ ɥɟɝɤɨ ɜɵɱɢɫɥɢɬɶ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ        ɦɟɞɥɟɧɧɨ. ɋɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ, ɧɚɩɪɨɬɢɜ, ɨɱɟɧɶ ɪɟɡɤɨ ɡɚɜɢɫɢɬ ɨɬ T.
ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ k0. ɉɨɞɨɛɧɵɣ ɩɪɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɥɢɧɟɚ-            ɍɠɟ ɢɡ ɨɛɳɢɯ ɫɨɨɛɪɚɠɟɧɢɣ ɩɨɧɹɬɧɨ, ɱɬɨ ɧɟ ɤɚɠɞɨɟ ɫɬɨɥɤɧɨɜɟɧɢɟ ɩɪɢ-
ɪɢɡɚɰɢɟɣ.                                                                   ɜɨɞɢɬ ɤ ɪɟɚɝɢɪɨɜɚɧɢɸ ɱɚɫɬɢɰ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɫɤɨɪɨɫɬɶ, ɪɚɫɫɱɢɬɚɧɧɚɹ
                                     17                                                                                              18