ВУЗ:
Составители:
Рубрика:
ɟɟ ɮɢɡɢɱɟɫɤɢɣ ɫɦɵɫɥ ɫɬɚɧɟɬ ɹɫɟɧ ɩɨɡɞɧɟɟ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ
ɫɨɫɬɚɜɥɹɟɬ ɨɬ 50 ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɫɨɬɟɧ
ɤȾɠ
e
ɦɨɥɶ
.
Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ k(T) ɩɨ ɭɪɚɜɧɟɧɢɸ Ⱥɪɪɟɧɢɭɫɚ ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫ. 2.
ɇɚ ɧɟɦ ɜ ɤɚɱɟɫɬɜɟ ɤɨɨɪɞɢɧɚɬ ɢɫɩɨɥɶɡɨɜɚɧɵ ɛɟɡɪɚɡɦɟɪɧɵɟ ɨɬɧɨɲɟɧɢɹ k/k
0
ɢ T/T
a
, ɝɞɟ T
a
= E
a
/R – ɬɚɤ ɧɚɡɵɜɚɟɦɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɚɤɬɢɜɚɰɢɢ. Ɂɚɜɢɫɢɦɨɫɬɶ
ɛɵɫɬɪɨ ɜɨɡɪɚɫɬɚɟɬ ɧɚ ɧɚɱɚɥɶɧɨɦ ɭɱɚɫɬɤɟ ɢ ɢɦɟɟɬ ɩɟɪɟɝɢɛ ɩɪɢ T =
1
e
2
T
a
. ȿɫ-
ɥɢ E
a
= 50
ɤȾɠ
e
ɦɨɥɶ
, ɬɨ ɬɟɦɩɟɪɚɬɭɪɚ ɩɟɪɟɝɢɛɚ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 3000 Ʉ. ɉɨ-
ɷɬɨɦɭ ɨɛɵɱɧɵɟ ɭɫɥɨɜɢɹ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ,
ɩɪɢɯɨɞɹɬɫɹ ɧɚ ɛɵɫɬɪɨɜɨɡɪɚɫɬɚɸɳɭɸ ɱɚɫɬɶ. ɋɜɟɪɯɭ ɮɭɧɤɰɢɹ (I.12) ɨɝɪɚɧɢ-
ɱɟɧɚ ɩɪɟɞɟɥɨɦ
00
lim
a
TT
T
e
f
kk
'
.
Ɋɢɫ. 2 Ɋɢɫ. 3
ɗɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ, ɫ ɨɞɧɨɣ ɫɬɨɪɨ-
ɧɵ ɨɩɪɟɞɟɥɹɸɳɟɣ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ, ɫ ɞɪɭɝɨɣ – ɩɪɢɧ-
ɰɢɩɢɚɥɶɧɵɦ ɨɛɪɚɡɨɦ ɫɜɹɡɚɧɧɨɣ ɫ ɦɟɯɚɧɢɡɦɨɦ ɪɟɚɤɰɢɢ. ɉɨɷɬɨɦɭ ɜ ɷɤɫɩɟ-
ɪɢɦɟɧɬɚɥɶɧɨɣ ɯɢɦɢɢ ɨɱɟɧɶ ɜɚɠɧɨ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɣ ɚɤɬɢɜɚɰɢɢ ɪɚɡɥɢɱ-
ɧɵɯ ɪɟɚɤɰɢɣ. Ɉɛɵɱɧɨ ɞɥɹ ɷɬɨɝɨ ɩɪɢɦɟɧɹɟɬɫɹ ɫɥɟɞɭɸɳɢɣ ɩɪɢɟɦ. ɍɪɚɜɧɟ-
ɧɢɟ (I.12) ɩɨɫɥɟ ɥɨɝɚɪɢɮɦɢɪɨɜɚɧɢɹ ɦɨɠɧɨ ɩɟɪɟɩɢɫɚɬɶ ɜ ɜɢɞɟ:
0
1
ln ln
a
E
RT
kk
.
ȿɫɥɢ ɡɚɦɟɧɢɬɶ ɩɟɪɟɦɟɧɧɵɟ y = ln k, x = 1/T, ɬɨ ɭɪɚɜɧɟɧɢɟ ɫɬɚɧɟɬ ɥɢɧɟɣɧɵɦ:
a
E
R
yb x . Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜ ɧɨɜɵɯ ɤɨɨɪɞɢɧɚɬɚɯ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ
k(T) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɹɦɭɸ ɜɨ ɜɫɟɣ ɨɛɥɚɫɬɢ ɨɩɪɟɞɟɥɟɧɢɹ T > 0
(ɪɢɫ. 3). Ɉɩɪɟɞɟɥɹɹ ɟɟ ɩɚɪɚɦɟɬɪɵ ɥɟɝɤɨ ɜɵɱɢɫɥɢɬɶ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ
ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ k
0
. ɉɨɞɨɛɧɵɣ ɩɪɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɥɢɧɟɚ-
ɪɢɡɚɰɢɟɣ.
17
ɇɚɣɞɟɦ ɫɜɹɡɶ ɦɟɠɞɭ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ ɢ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ⱦɥɹ ɷɬɨɝɨ ɢɡ
ɮɨɪɦɭɥɵ (I.11) ɜɵɪɚɡɢɦ ɩɪɨɢɡɜɨɞɧɭɸ ɩɨ ɬɟɦɩɟɪɚɬɭɪɟ:
00
()() ()
lim ( ) lim
TT
dTTT T
T
dT T T
''
1' J '
''
kk k
k
''
.
ɉɪɟɞɟɥ
0
()1
lim
T
T
T
'
J'
'
J
'
ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɜɵɪɚɠɟɧɢɹ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɭ ɜɟ-
ɥɢɱɢɧɭ ɦɵ ɛɭɞɟɦ ɧɚɡɵɜɚɬɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ɉɬɫɸɞɚ
()
d
T
dT
J
k
k
ɢɥɢ ()
T
Tae
J
k (I.13)
ɩɨɫɥɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ (a – ɩɨɫɬɨɹɧɧɚɹ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ,
ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨ ɪɚɫɬɟɬ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ. ɋɜɹɡɶ ɦɟɠɞɭ ɞɢɮɮɟɪɟɧɰɢ-
ɚɥɶɧɵɦ ɢ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɢɦɟɟɬ ɜɢɞ:
()
()
()
T
TT
Te
T
J
'
'
J'
k
k
.
ɋ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ, ɞɢɮɮɟɪɟɧɰɢɪɭɹ ɭɪɚɜɧɟɧɢɟ Ⱥɪɪɟɧɢɭɫɚ, ɧɚɣɞɟɦ:
0
2
a
ERT
a
dE
e
dT RT
k
k
18
ɢɥɢ
2
a
dE
dT RT
k
k
. (I.14)
ɋɪɚɜɧɢɦ ɬɟɩɟɪɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɭɸ ɮɨɪɦɭ ɩɪɚ-
ɜɢɥɚ ȼɚɧɬ-Ƚɨɮɮɚ (I.13) ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ.
ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɭɪɚɜɧɟɧɢɹ (I.13) ɜ (I.14) ɩɨɥɭ-
ɱɚɟɬɫɹ, ɱɬɨ
J = E
a
/RT
2
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɧɟ ɹɜ-
ɥɹɟɬɫɹ ɫɬɪɨɝɨ ɩɨɫɬɨɹɧɧɵɦ. ɇɨ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵ-
ɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ (ɤɨɦɧɚɬɧɨɣ ɢ ɜɵɲɟ) ɜɟɥɢɱɢɧɚ
E
a
/RT
2
ɦɟɧɹɟɬɫɹ ɦɟɞɥɟɧɧɨ. ɗɬɨ ɢ ɩɪɢɜɨɞɢɬ ɤ ɩɪɢɛɥɢɠɟɧɧɨɦɭ ɜɵɩɨɥɧɟɧɢɸ ɩɪɚɜɢɥɚ
ȼɚɧɬ-Ƚɨɮɮɚ. ȿɫɥɢ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 50 ɞɨ 100 ɤȾɠ/ɦɨɥɶ, ɬɨ
10-ɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ J (10 Ʉ) ɨɫɬɚɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɬ 2 ɞɨ 4 ɩɪɢ 298 Ʉ. ɋɪɚɜɧɟ-
ɧɢɟ ɡɚɜɢɫɢɦɨɫɬɟɣ ɩɨ ȼɚɧɬ-Ƚɨɮɮɭ ɢ Ⱥɪɪɟɧɢɭɫɭ ɞɚɧɨ ɧɚ ɪɢɫ. 4.
Ɋɢɫ. 4
8. Ɉ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ
Ɇɵ ɩɪɢɞɟɪɠɢɜɚɟɦɫɹ ɬɚɤɨɝɨ ɜɡɝɥɹɞɚ ɧɚ ɷɥɟɦɟɧɬɚɪɧɵɣ ɚɤɬ ɪɟɚɤɰɢɢ, ɱɬɨ
ɨɧ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɧɚɦ ɩɪɨɢɫɯɨɞɹɳɢɦ ɜ ɦɨɦɟɧɬ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ. ɗɬɚ
ɬɨɱɤɚ ɡɪɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɨɛɨɫɧɨɜɚɬɶ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɭɫɬɚɧɨɜɥɟɧɧɵɣ ɡɚ-
ɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ, ɨɞɧɚɤɨ ɨɧɚ ɧɟ ɝɨɞɢɬɫɹ ɞɥɹ ɨɛɴɹɫɧɟɧɢɹ ɬɟɦɩɟɪɚ-
ɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɱɚɫɬɨɬɚ ɫɨɭɞɚɪɟɧɢɣ ɜɨɡɪɚɫ-
ɬɚɟɬ ɤɚɤ z
T
1/2
(ɮɨɪɦɭɥɚ (I.5)), ɬɨ ɟɫɬɶ ɦɟɧɹɟɬɫɹ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ ɞɨɜɨɥɶɧɨ
ɦɟɞɥɟɧɧɨ. ɋɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ, ɧɚɩɪɨɬɢɜ, ɨɱɟɧɶ ɪɟɡɤɨ ɡɚɜɢɫɢɬ ɨɬ T.
ɍɠɟ ɢɡ ɨɛɳɢɯ ɫɨɨɛɪɚɠɟɧɢɣ ɩɨɧɹɬɧɨ, ɱɬɨ ɧɟ ɤɚɠɞɨɟ ɫɬɨɥɤɧɨɜɟɧɢɟ ɩɪɢ-
ɜɨɞɢɬ ɤ ɪɟɚɝɢɪɨɜɚɧɢɸ ɱɚɫɬɢɰ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɫɤɨɪɨɫɬɶ, ɪɚɫɫɱɢɬɚɧɧɚɹ
ɟɟ ɮɢɡɢɱɟɫɤɢɣ ɫɦɵɫɥ ɫɬɚɧɟɬ ɹɫɟɧ ɩɨɡɞɧɟɟ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɇɚɣɞɟɦ ɫɜɹɡɶ ɦɟɠɞɭ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ ɢ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ⱦɥɹ ɷɬɨɝɨ ɢɡ ɫɨɫɬɚɜɥɹɟɬ ɨɬ 50 ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɫɨɬɟɧ ɤȾɠeɦɨɥɶ. ɮɨɪɦɭɥɵ (I.11) ɜɵɪɚɡɢɦ ɩɪɨɢɡɜɨɞɧɭɸ ɩɨ ɬɟɦɩɟɪɚɬɭɪɟ: Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ k(T) ɩɨ ɭɪɚɜɧɟɧɢɸ Ⱥɪɪɟɧɢɭɫɚ ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫ. 2. dk k(T 'T ) k(T ) J ('T ) 1 lim k(T ) lim . ɇɚ ɧɟɦ ɜ ɤɚɱɟɫɬɜɟ ɤɨɨɪɞɢɧɚɬ ɢɫɩɨɥɶɡɨɜɚɧɵ ɛɟɡɪɚɡɦɟɪɧɵɟ ɨɬɧɨɲɟɧɢɹ k/k0 dT 'T '0 'T 'T '0 'T ɢ T/Ta, ɝɞɟ Ta = Ea/R – ɬɚɤ ɧɚɡɵɜɚɟɦɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɚɤɬɢɜɚɰɢɢ. Ɂɚɜɢɫɢɦɨɫɬɶ J ( 'T ) 1 ɉɪɟɞɟɥ J lim ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɜɵɪɚɠɟɧɢɹ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɭ ɜɟ- ɛɵɫɬɪɨ ɜɨɡɪɚɫɬɚɟɬ ɧɚ ɧɚɱɚɥɶɧɨɦ ɭɱɚɫɬɤɟ ɢ ɢɦɟɟɬ ɩɟɪɟɝɢɛ ɩɪɢ T = 1e2Ta. ȿɫ- 'T '0'T ɥɢ Ea = 50 ɤȾɠeɦɨɥɶ, ɬɨ ɬɟɦɩɟɪɚɬɭɪɚ ɩɟɪɟɝɢɛɚ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 3000 Ʉ. ɉɨ- ɥɢɱɢɧɭ ɦɵ ɛɭɞɟɦ ɧɚɡɵɜɚɬɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ȼɚɧɬ-Ƚɨɮɮɚ. Ɉɬɫɸɞɚ ɷɬɨɦɭ ɨɛɵɱɧɵɟ ɭɫɥɨɜɢɹ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ, dk Jk(T ) ɢɥɢ k(T ) ae JT (I.13) ɩɪɢɯɨɞɹɬɫɹ ɧɚ ɛɵɫɬɪɨɜɨɡɪɚɫɬɚɸɳɭɸ ɱɚɫɬɶ. ɋɜɟɪɯɭ ɮɭɧɤɰɢɹ (I.12) ɨɝɪɚɧɢ- dT ɱɟɧɚ ɩɪɟɞɟɥɨɦ ɩɨɫɥɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ (a – ɩɨɫɬɨɹɧɧɚɹ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɨɝɥɚɫɧɨ ɩɪɚɜɢɥɭ ȼɚɧɬ-Ƚɨɮɮɚ, ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨ ɪɚɫɬɟɬ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ. ɋɜɹɡɶ ɦɟɠɞɭ ɞɢɮɮɟɪɟɧɰɢ- k0 lim e Ta T k0 . ɚɥɶɧɵɦ ɢ ɝɪɚɞɭɫɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɢɦɟɟɬ ɜɢɞ: T 'f k(T 'T ) J ('T ) e J'T . k(T ) ɋ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ, ɞɢɮɮɟɪɟɧɰɢɪɭɹ ɭɪɚɜɧɟɧɢɟ Ⱥɪɪɟɧɢɭɫɚ, ɧɚɣɞɟɦ: dk Ea k0e Ea RT dT RT 2 ɢɥɢ dk Ea k . (I.14) dT RT 2 ɋɪɚɜɧɢɦ ɬɟɩɟɪɶ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɭɸ ɮɨɪɦɭ ɩɪɚ- ɜɢɥɚ ȼɚɧɬ-Ƚɨɮɮɚ (I.13) ɫ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ. ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɭɪɚɜɧɟɧɢɹ (I.13) ɜ (I.14) ɩɨɥɭ- ɱɚɟɬɫɹ, ɱɬɨ J = Ea/RT2. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɧɟ ɹɜ- Ɋɢɫ. 2 Ɋɢɫ. 3 ɥɹɟɬɫɹ ɫɬɪɨɝɨ ɩɨɫɬɨɹɧɧɵɦ. ɇɨ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵ- ɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ (ɤɨɦɧɚɬɧɨɣ ɢ ɜɵɲɟ) ɜɟɥɢɱɢɧɚ Ɋɢɫ. 4 ɗɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ, ɫ ɨɞɧɨɣ ɫɬɨɪɨ- Ea/RT2 ɦɟɧɹɟɬɫɹ ɦɟɞɥɟɧɧɨ. ɗɬɨ ɢ ɩɪɢɜɨɞɢɬ ɤ ɩɪɢɛɥɢɠɟɧɧɨɦɭ ɜɵɩɨɥɧɟɧɢɸ ɩɪɚɜɢɥɚ ɧɵ ɨɩɪɟɞɟɥɹɸɳɟɣ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ, ɫ ɞɪɭɝɨɣ – ɩɪɢɧ- ȼɚɧɬ-Ƚɨɮɮɚ. ȿɫɥɢ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɥɟɠɢɬ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 50 ɞɨ 100 ɤȾɠ/ɦɨɥɶ, ɬɨ ɰɢɩɢɚɥɶɧɵɦ ɨɛɪɚɡɨɦ ɫɜɹɡɚɧɧɨɣ ɫ ɦɟɯɚɧɢɡɦɨɦ ɪɟɚɤɰɢɢ. ɉɨɷɬɨɦɭ ɜ ɷɤɫɩɟ- 10-ɝɪɚɞɭɫɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ J (10 Ʉ) ɨɫɬɚɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɬ 2 ɞɨ 4 ɩɪɢ 298 Ʉ. ɋɪɚɜɧɟ- ɪɢɦɟɧɬɚɥɶɧɨɣ ɯɢɦɢɢ ɨɱɟɧɶ ɜɚɠɧɨ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɣ ɚɤɬɢɜɚɰɢɢ ɪɚɡɥɢɱ- ɧɢɟ ɡɚɜɢɫɢɦɨɫɬɟɣ ɩɨ ȼɚɧɬ-Ƚɨɮɮɭ ɢ Ⱥɪɪɟɧɢɭɫɭ ɞɚɧɨ ɧɚ ɪɢɫ. 4. ɧɵɯ ɪɟɚɤɰɢɣ. Ɉɛɵɱɧɨ ɞɥɹ ɷɬɨɝɨ ɩɪɢɦɟɧɹɟɬɫɹ ɫɥɟɞɭɸɳɢɣ ɩɪɢɟɦ. ɍɪɚɜɧɟ- ɧɢɟ (I.12) ɩɨɫɥɟ ɥɨɝɚɪɢɮɦɢɪɨɜɚɧɢɹ ɦɨɠɧɨ ɩɟɪɟɩɢɫɚɬɶ ɜ ɜɢɞɟ: 8. Ɉ ɬɟɨɪɢɢ ɚɤɬɢɜɧɵɯ ɫɬɨɥɤɧɨɜɟɧɢɣ Ea 1 ln k ln k0 . Ɇɵ ɩɪɢɞɟɪɠɢɜɚɟɦɫɹ ɬɚɤɨɝɨ ɜɡɝɥɹɞɚ ɧɚ ɷɥɟɦɟɧɬɚɪɧɵɣ ɚɤɬ ɪɟɚɤɰɢɢ, ɱɬɨ R T ɨɧ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɧɚɦ ɩɪɨɢɫɯɨɞɹɳɢɦ ɜ ɦɨɦɟɧɬ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ. ɗɬɚ ȿɫɥɢ ɡɚɦɟɧɢɬɶ ɩɟɪɟɦɟɧɧɵɟ y = ln k, x = 1/T, ɬɨ ɭɪɚɜɧɟɧɢɟ ɫɬɚɧɟɬ ɥɢɧɟɣɧɵɦ: ɬɨɱɤɚ ɡɪɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɨɛɨɫɧɨɜɚɬɶ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɭɫɬɚɧɨɜɥɟɧɧɵɣ ɡɚ- Ea ɤɨɧ ɞɟɣɫɬɜɭɸɳɢɯ ɦɚɫɫ, ɨɞɧɚɤɨ ɨɧɚ ɧɟ ɝɨɞɢɬɫɹ ɞɥɹ ɨɛɴɹɫɧɟɧɢɹ ɬɟɦɩɟɪɚ- y b x . Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜ ɧɨɜɵɯ ɤɨɨɪɞɢɧɚɬɚɯ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ R ɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɱɚɫɬɨɬɚ ɫɨɭɞɚɪɟɧɢɣ ɜɨɡɪɚɫ- k(T) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɹɦɭɸ ɜɨ ɜɫɟɣ ɨɛɥɚɫɬɢ ɨɩɪɟɞɟɥɟɧɢɹ T > 0 ɬɚɟɬ ɤɚɤ z T1/2 (ɮɨɪɦɭɥɚ (I.5)), ɬɨ ɟɫɬɶ ɦɟɧɹɟɬɫɹ ɫ ɬɟɦɩɟɪɚɬɭɪɨɣ ɞɨɜɨɥɶɧɨ (ɪɢɫ. 3). Ɉɩɪɟɞɟɥɹɹ ɟɟ ɩɚɪɚɦɟɬɪɵ ɥɟɝɤɨ ɜɵɱɢɫɥɢɬɶ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ ɦɟɞɥɟɧɧɨ. ɋɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ, ɧɚɩɪɨɬɢɜ, ɨɱɟɧɶ ɪɟɡɤɨ ɡɚɜɢɫɢɬ ɨɬ T. ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ k0. ɉɨɞɨɛɧɵɣ ɩɪɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɥɢɧɟɚ- ɍɠɟ ɢɡ ɨɛɳɢɯ ɫɨɨɛɪɚɠɟɧɢɣ ɩɨɧɹɬɧɨ, ɱɬɨ ɧɟ ɤɚɠɞɨɟ ɫɬɨɥɤɧɨɜɟɧɢɟ ɩɪɢ- ɪɢɡɚɰɢɟɣ. ɜɨɞɢɬ ɤ ɪɟɚɝɢɪɨɜɚɧɢɸ ɱɚɫɬɢɰ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɫɤɨɪɨɫɬɶ, ɪɚɫɫɱɢɬɚɧɧɚɹ 17 18
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »