ВУЗ:
Составители:
29
λ
i
1 μ
i
−:=μ
i
h
i1−
h
i
h
i1−
+
:=i1M1−..:=
h
i
T
i1+
T
i
−:=i0M1−..:=
T
i
T
i1−
X
i
X
i1−
−
()
2
Y
i
Y
i1−
−
()
2
++:=i1M..:=T
0
0:=
Y
i
sin 3 G
i
⋅
()
:=X
i
sin 2 G
i
⋅
()
:=G
i
i
2π
M
⋅:=i0M..:=
b1 v() v
2
− v
3
+:=b0 v() v 2v
2
− v
3
+:=a1 v() 3v
2
2v
3
−:=a0 v() 1 3v
2
− 2v
3
+:=
M30:=ORIGIN 0:=
c
M
3
X
1
X
0
−
h
0
()
2
X
M
X
M1−
−
h
M1−
()
2
+
⎡
⎢
⎢
⎣
⎤
⎥
⎥
⎦
⋅:=
A
MM,
2
h
M1−
:=A
MM1−,
1
h
M1−
:=A
M1,
1
h
0
:=A
M0,
2
h
0
:=c
0
0:=A
0M,
1−:=A
00,
1:=
c
i
3 μ
i
X
i1+
X
i
−
h
i
⋅λ
i
X
i
X
i1−
−
h
i1−
⋅+
⎛
⎜
⎜
⎝
⎞
⎟
⎟
⎠
⋅:=A
ii 1+,
μ
i
:=A
ii,
2:=A
ii1−,
λ
i
:=i1M1−..:=
A
ij,
0:=j0M..:=i0M..:=
i0M..:= j0M..:= B
ij,
0:=
i1M1−..:= B
ii1−,
λ
i
:= B
ii,
2:= B
ii 1+,
μ
i
:= d
i
3 μ
i
Y
i1+
Y
i
−
h
i
⋅λ
i
Y
i
Y
i1−
−
h
i1−
⋅+
⎛
⎜
⎜
⎝
⎞
⎟
⎟
⎠
⋅:=
B
00,
1:= B
0M,
1−:= d
0
0:= B
M0,
2
h
0
:= B
M1,
1
h
0
:= B
MM1−,
1
h
M1−
:= B
MM,
2
h
M1−
:=
d
M
3
Y
1
Y
0
−
h
0
()
2
Y
M
Y
M1−
−
h
M1−
()
2
+
⎡
⎢
⎢
⎣
⎤
⎥
⎥
⎦
⋅:=
pX A
1−
c⋅:= pY B
1−
d⋅:=
xt() E 0←
z
tT
i
−
h
i
←
EX
i
a0 z()⋅ X
i1+
a1 z()⋅+ pX
i
b0 z()⋅ h
i
⋅+ pX
i1+
b1 z()⋅ h
i
⋅+←
T
i
t≤ T
i1+
<if
i0M1−..∈for
E
:=
29
ORIGIN:= 0 M := 30
2 3 2 3 2 3 2 3
a0( v ) := 1 − 3v + 2v a1( v ) := 3v − 2v b0( v ) := v − 2v + v b1( v ) := −v + v
( ) ( )
2π
i := 0 .. M G := i ⋅ X := sin 2 ⋅ G Y := sin 3 ⋅ G
i M i i i i
T := 0
0
i := 1 .. M T := T
i i− 1
+ ( Xi − Xi−1)2 + (Yi − Yi−1)2
i := 0 .. M − 1 h := T −T
i i+ 1 i
h
i− 1
i := 1 .. M − 1 μ i := λi := 1 − μ i
h +h
i i− 1
i := 0 .. M j := 0 .. M A := 0
i, j
⎛ X −X X −X
i− 1 ⎞
c := 3 ⋅ ⎜ μ i ⋅ ⎟
i+ 1 i i
i := 1 .. M − 1 A := λi A := 2 A := μ i + λi ⋅
i , i− 1 i, i i , i+ 1 i ⎜ h h ⎟
⎝ i i− 1 ⎠
2 1 1 2
A := 1 A := −1 c := 0 A := A := A := A :=
0, 0 0, M 0 M,0 h M,1 h M , M −1 h M,M h
0 0 M −1 M −1
⎡ X1 − X0 XM − XM −1 ⎤
c := 3 ⋅ ⎢ + ⎥
M
⎢ (h )2 ( h M − 1) ⎦
2 ⎥
⎣ 0
i := 0 .. M j := 0 .. M B := 0
i, j
⎛ Y −Y Y −Y
i− 1 ⎞
d := 3 ⋅ ⎜ μ i ⋅ ⎟
i+ 1 i i
i := 1 .. M − 1 B := λi B := 2 B := μ i + λi ⋅
i , i− 1 i, i i , i+ 1 i ⎜ h h ⎟
⎝ i i− 1 ⎠
2 1 1 2
B := 1 B := −1 d := 0 B := B := B := B :=
0, 0 0, M 0 M,0 h M,1 h M , M −1 h M,M h
0 0 M −1 M −1
⎡ Y1 − Y0 Y
M
−Y
M −1 ⎤
d := 3 ⋅ ⎢ + ⎥
M
⎢
⎣ ( h 0) 2
(hM −1) 2 ⎥
⎦
−1 −1
pX := A ⋅c pY := B ⋅d
x( t) := E← 0
for i ∈ 0 .. M − 1
if T ≤ t < T
i i+ 1
t−T
i
z←
h
i
E ← X ⋅ a0( z) + X ⋅ a1( z) + pX ⋅ b0( z) ⋅ h + pX ⋅ b1( z) ⋅ h
i i+ 1 i i i+ 1 i
E
Страницы
- « первая
- ‹ предыдущая
- …
- 27
- 28
- 29
- 30
- 31
- …
- следующая ›
- последняя »
