Курс математики для нематематических специальностей технических университетов: В 2 т. Т.1. Назаров А.И - 201 стр.

UptoLike

Составители: 

Рубрика: 

g(t) = exp(t
2
) · δ
1
(t).
M a
t exp(t
2
) M ·exp(at)
exp(at) > 0
exp(t
2
at) M, t
2
at ln(M).
t lim
t=+
(t
2
at) = +. g
cos(ωt) · δ
1
(t) =
1
2
· exp(i ωt) · δ
1
(t) +
1
2
· exp(i ωt) · δ
1
(t);
sin(ωt) · δ
1
(t) =
1
2i
· exp(i ωt) · δ
1
(t)
1
2i
· exp(i ωt) · δ
1
(t).
f F (t) =
t
R
0
f
t < 0 f(t) 0
t
R
0
f = 0 t > 0
|f(t)| M · exp(at)
|F (t)| =
¯
¯
¯
t
Z
0
f
¯
¯
¯
t
Z
0
|f| sup
[0,t]
(|f|) ·t M ·exp(at) ·t M ·exp((a + 1)t).
t
n
·δ
1
(t) n N
t·δ
1
(t) =
t
Z
0
δ
1
(t) dt; t
2
·δ
1
(t) = 2
t
Z
0
t·δ
1
(t) dt; . . . , t
n
·δ
1
(t) = n
t
Z
0
t
n1
·δ
1
(t) dt.
f
1
, f
2
: R C
x