ВУЗ:
Составители:
135
заполняет пространство водосбора III ранга. 
 В этом случае формула принимает вид:  
F=0.58L
1.77178
,           (3.48) 
что  не  отличается  от  аналогичных  зависимостей,  установленных 
стохастическими  методами  для  реальных  речных  бассейнов  территории 
США  (Д.Грей,  1967  г.)  и  для  европейской  части  СССР  (Р.Нежиховский, 
1971 г.).  
Ёлка-фрактал равномерно, компактно и плотно покрывает поверхность, 
на  которой  она  ветвится  и  по  соотношению  площадных  и  линейных 
характеристик  тождественна  речной  сети  среднестатистического  речного 
бассейна  Земли.  Ветвясь,  она,  так  же  как  и  речная  сеть,  не  полностью 
охватывает  поверхность  «водосбора»,  то  есть  имеет  «водораздельные 
пространства».  Кроме  того,  Корохов  на  основе  своей  модели  изобрел 
конструкцию  совершенной мелиоративной сети, где использован принцип 
ветвления ёлки-фрактала. 
Фракталы и медицина 
Интересны  недавно опубликованные  в  США  результаты  исследования 
Рис.  3.38.  Ёлка-фрактал  равномерно  заполняет  поверхность  шестиугольника. 
Цифрами обозначены 1 – точка роста; 2 – фигура, в которой развивается структура 
фрактала; 3 – внутренняя точка; 4 – корень ёлки-фрактала. 
Страницы
- « первая
 - ‹ предыдущая
 - …
 - 135
 - 136
 - 137
 - 138
 - 139
 - …
 - следующая ›
 - последняя »
 
