Практикум по теории управления в среде MATLAB. Никульчев Е.В. - 75 стр.

UptoLike

Составители: 

Варианты заданий
Модель системы Функционал качества управления
1.
=
++=
1
0
2
2
2
2
2
1
)()(4)(3
2
1
k
kxkukuJ
2.
)(4)()(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
=
1.
3)0(,1)0(
)()()()1(
)(3)()(3)1(
21
1212
2111
==
+=+
+=+
xx
kukxkxkx
kukukxkx
3.
)(12)(8)(4)(2
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
=
1.
=
++=
1
0
2
2
2
2
2
1
)(5)()(7
2
1
k
kxkukuJ
2.
)()(9)(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
=
2.
2)0(,1)0(
)()(4)()(2)1(
)(3)(2)(2)()1(
21
21212
21211
==
+=+
+=+
xx
kukukxkxkx
kukukxkxkx
3.
)(8)(6)(4)(
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
=
1.
=
++=
1
0
2
2
2
2
2
1
)()(4)(2
2
1
k
kxkukuJ
2.
)(4)(3)(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
=
3.
1)0(,1)0(
)(2)(4)()1(
)()()(2)1(
21
2212
1121
==
+=+
+=+
xx
kukxkxkx
kukxkxkx
3.
)(7)(3)(2)(
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
=
1.
=
+=
1
0
2
2
2
)(8)(4
2
1
k
kxkuJ
2.
)(4)()(
2
1
1
2
1
0
1
2
2
kxkxkuJ
k
++=
=
4.
1)0(,1)0(
)(2)()(2)1(
)()()()1(
21
212
211
==
+=+
=+
xx
kukxkxkx
kukxkxkx
3.
)()(3)(3
2
1
1
2
1
0
1
2
2
kxkxkuJ
k
++=
=
75 –
                                              Варианты заданий


               Модель системы                                Функционал качества управления
1.                                                                 1 1 2                          2
x1 (k + 1) = 3 x1 (k ) − u1 (k ) + 3u2 (k )                  1. J =  ∑ 3u1 (k ) + 4u22 (k ) + x2 (k )
                                                                   2 k =0
x2 (k + 1) = x1 (k ) − x2 (k ) + u1 (k )
                                                                   1 1 2
                                                             2. J = ∑ 2u1 ( k ) + x2 ( k ) + 4 x2 (k )
x1 (0) = 1, x2 (0) = 3                                                             1            1
                                                                   2 k =0
                                                             3.

                                                                     1 1 2
                                                              J=       ∑ 2u1 (k ) + 4u22 (k ) + 8 x12 (k ) + 12 x12 (k )
                                                                     2 k =0

2.                                                                 1 1 2                          2
x1 (k + 1) = x1 ( k ) + 2 x2 ( k ) − 2u1 (k ) − 3u 2 (k )    1. J =  ∑ 7u1 (k ) + u22 (k ) + 5 x2 (k )
                                                                   2 k =0
x2 (k + 1) = 2 x1 (k ) + x2 (k ) − 4u1 (k ) − u 2 (k )
                                                                   1 1 2
                                                             2. J = ∑ 2u1 ( k ) + 9 x2 ( k ) + x2 ( k )
x1 (0) = 1, x2 (0) = 2                                                                1         1
                                                                   2 k =0
                                                                    1 1 2
                                                             3. J =   ∑u1 (k) + 4u22 (k ) + 6x12 (k) + 8x12 (k)
                                                                    2 k =0

3.                                                                 1 1 2                         2
x1 (k + 1) = 2 x2 (k ) + x1 (k ) − u1 (k )                   1. J =  ∑ 2u1 (k ) + 4u22 (k ) + x2 (k )
                                                                   2 k =0
x2 (k + 1) = x1 (k ) + 4 x2 (k ) − 2u 2 (k )
                                                                   1 1 2
                                                             2. J = ∑ 2u1 (k ) + 3 x2 ( k ) + 4 x2 ( k )
                                                                                    1            1
x1 (0) = 1, x2 (0) = 1
                                                                   2 k =0
                                                                   1 1 2
                                                             3. J = ∑u1 (k ) + 2u2 (k ) + 3x2 (k ) + 7x2 (k )
                                                                                 2          1          1
                                                                   2 k =0

4.                                                                 1 1 2               2
x1 (k + 1) = x1 (k ) − x2 (k ) − u (k )
                                                             1. J =  ∑ 4u (k ) + 8 x2 (k )
                                                                   2 k =0
x2 (k + 1) = 2 x1 (k ) + x2 (k ) − 2u (k )                         1 1 2
                                                             2. J = ∑ u ( k ) + x2 ( k ) + 4 x2 ( k )
                                                                                 1            1
x1 (0) = 1, x2 (0) = 1
                                                                   2 k =0
                                                                   1 1 2
                                                             3. J = ∑ 3u (k ) + 3x2 (k ) + x2 (k )
                                                                                  1         1
                                                                   2 k =0




                                                            – 75 –