ВУЗ:
Составители:
Рубрика:
Варианты заданий
Модель системы Функционал качества управления
1.
∑
=
++=
1
0
2
2
2
2
2
1
)()(4)(3
2
1
k
kxkukuJ
2.
)(4)()(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
∑
=
1.
3)0(,1)0(
)()()()1(
)(3)()(3)1(
21
1212
2111
==
+−=+
+−=+
xx
kukxkxkx
kukukxkx
3.
)(12)(8)(4)(2
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
∑
=
1.
∑
=
++=
1
0
2
2
2
2
2
1
)(5)()(7
2
1
k
kxkukuJ
2.
)()(9)(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
∑
=
2.
2)0(,1)0(
)()(4)()(2)1(
)(3)(2)(2)()1(
21
21212
21211
==
−−+=+
−−+=+
xx
kukukxkxkx
kukukxkxkx
3.
)(8)(6)(4)(
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
∑
=
1.
∑
=
++=
1
0
2
2
2
2
2
1
)()(4)(2
2
1
k
kxkukuJ
2.
)(4)(3)(2
2
1
1
2
1
0
1
2
2
1
kxkxkuJ
k
++=
∑
=
3.
1)0(,1)0(
)(2)(4)()1(
)()()(2)1(
21
2212
1121
==
−+=+
−+=+
xx
kukxkxkx
kukxkxkx
3.
)(7)(3)(2)(
2
1
1
2
1
0
1
2
2
2
2
1
kxkxkukuJ
k
+++=
∑
=
1.
∑
=
+=
1
0
2
2
2
)(8)(4
2
1
k
kxkuJ
2.
)(4)()(
2
1
1
2
1
0
1
2
2
kxkxkuJ
k
++=
∑
=
4.
1)0(,1)0(
)(2)()(2)1(
)()()()1(
21
212
211
==
−+=+
−−=+
xx
kukxkxkx
kukxkxkx
3.
)()(3)(3
2
1
1
2
1
0
1
2
2
kxkxkuJ
k
++=
∑
=
–
75 –
Варианты заданий
Модель системы Функционал качества управления
1. 1 1 2 2
x1 (k + 1) = 3 x1 (k ) − u1 (k ) + 3u2 (k ) 1. J = ∑ 3u1 (k ) + 4u22 (k ) + x2 (k )
2 k =0
x2 (k + 1) = x1 (k ) − x2 (k ) + u1 (k )
1 1 2
2. J = ∑ 2u1 ( k ) + x2 ( k ) + 4 x2 (k )
x1 (0) = 1, x2 (0) = 3 1 1
2 k =0
3.
1 1 2
J= ∑ 2u1 (k ) + 4u22 (k ) + 8 x12 (k ) + 12 x12 (k )
2 k =0
2. 1 1 2 2
x1 (k + 1) = x1 ( k ) + 2 x2 ( k ) − 2u1 (k ) − 3u 2 (k ) 1. J = ∑ 7u1 (k ) + u22 (k ) + 5 x2 (k )
2 k =0
x2 (k + 1) = 2 x1 (k ) + x2 (k ) − 4u1 (k ) − u 2 (k )
1 1 2
2. J = ∑ 2u1 ( k ) + 9 x2 ( k ) + x2 ( k )
x1 (0) = 1, x2 (0) = 2 1 1
2 k =0
1 1 2
3. J = ∑u1 (k) + 4u22 (k ) + 6x12 (k) + 8x12 (k)
2 k =0
3. 1 1 2 2
x1 (k + 1) = 2 x2 (k ) + x1 (k ) − u1 (k ) 1. J = ∑ 2u1 (k ) + 4u22 (k ) + x2 (k )
2 k =0
x2 (k + 1) = x1 (k ) + 4 x2 (k ) − 2u 2 (k )
1 1 2
2. J = ∑ 2u1 (k ) + 3 x2 ( k ) + 4 x2 ( k )
1 1
x1 (0) = 1, x2 (0) = 1
2 k =0
1 1 2
3. J = ∑u1 (k ) + 2u2 (k ) + 3x2 (k ) + 7x2 (k )
2 1 1
2 k =0
4. 1 1 2 2
x1 (k + 1) = x1 (k ) − x2 (k ) − u (k )
1. J = ∑ 4u (k ) + 8 x2 (k )
2 k =0
x2 (k + 1) = 2 x1 (k ) + x2 (k ) − 2u (k ) 1 1 2
2. J = ∑ u ( k ) + x2 ( k ) + 4 x2 ( k )
1 1
x1 (0) = 1, x2 (0) = 1
2 k =0
1 1 2
3. J = ∑ 3u (k ) + 3x2 (k ) + x2 (k )
1 1
2 k =0
– 75 –
Страницы
- « первая
- ‹ предыдущая
- …
- 73
- 74
- 75
- 76
- 77
- …
- следующая ›
- последняя »
