Лабораторные работы по численным методам. Пак Т.В. - 6 стр.

UptoLike

Составители: 

x
0
, x
1
, x
2
, . . . , x
n
, x = x
0
+ th, 0 < t < 1,
L
n
(x) = f
0
+ tf
1
1/2
+
t(t 1)
2
f
2
1
+ . . . +
t(t 1) ···(t (n 1))
n!
f
n
n/2
x
0
, x
1
, x
2
. . . , x
n
, x = x
0
+ th, 1 < t < 0
L
n
(x) = f
0
+ tf
1
1/2
+
t(t + 1)
2
f
2
1
+ . . . +
t(t + 1) . . . (t + (n 1))
n!
f
n
n/2
,
x
0
, x
1 1
x
2
, x
2
. . . , x
n/2
, x
n/2
, x = x
0
+ th
0 < t 0.5
L
n
(x)=f
0
+tf
1
1/2
+
t(t1)
2
f
2
0
+ . . . +
t(t
2
1) . . . (t
2
(
n
2
2)
2
)(t(
n
2
1))
n!
f
n
0
x
0
, x
1
, x
1
, x
2
, x
2
, . . . , x
n/2
, x
n/2
, x = x
0
+ th,
1/2 < t < 0
L
n
(x)=f
0
+tf
1
1/2
+
t(t+1)
2
f
2
0
+ . . . +
t(t
2
1) . . . (t
2
(
n
2
2)
2
)(t + (
n
2
1))
n!
f
n
0
.
L(x
0
+th) = f
0
+tµf
1
0
+
t
2
2!
f
2
0
+...+
t(t
2
1)(t
2
2
2
)...[t
2
(n 1)
2
]
(2n 1)!
µf
2n1
0
+
+
t
2
(t
2
1)...[t
2
(n 1)
2
]
(2n)!
f
2n
0
,
1
2
[f
2n1
1/2
+ f
2n1
1/2
] = µf
2n1
0
.
L
2n+2
(x
0
+ th) = µf
1/2
+ (t
1
2
)f
1
1/2
+
t(t 1)
2!
µf
2
1/2
+ ...+
+
t(t
2
1)(t
2
2
2
)...[t
2
(n 1)
2
](t n)
(2n)!
µf
2n
1/2
+
+
t(t
2
1)...[t
2
(n 1)
2
](t n)(t
1
2
)
(2n + 1)!
f
2n+1
1/2
,
1
2
[f
2n
1
+ f
2n
0
] = µf
2n
1/2
.
x
∗∗
x
∗∗∗
x
∗∗∗∗
x
∗∗
x
∗∗∗
x
∗∗∗∗
 Òåìà 2. Èíòåðïîëèðîâàíèå ôóíêöèè ñ ïîìî-
ùüþ èíòåðïîëÿöèîííûõ ôîðìóë c êîíå÷íûìè
ðàçíîñòÿìè
1. Ïîñòðîèòü òàáëèöó êîíå÷íûõ ðàçíîñòåé äëÿ ïîëó÷åííîé ïðè âûïîëíåíèè
ëàáîðàòîðíîé ðàáîòû 1 òàáëè÷íîé ôóíêöèè.
    2. Äëÿ òàáëèöû ñ ðàâíîîòñòîÿùèìè óçëàìè èñïîëüçóþòñÿ ôîðìóëû:
1-ÿ ôîðìóëà Íüþòîíà ïî x0 , x1 , x2 , . . . , xn , x = x0 + th, 0 < t < 1,
                1      t(t − 1) 2               t(t − 1) · · · (t − (n − 1)) n
Ln (x) = f0 + tf1/2 +           f1 + . . . +                                 fn/2 ,
                           2                                   n!
2-ÿ ôîðìóëà Íüþòîíà ïî x0 , x−1 , x−2 . . . , x−n , x = x0 + th, −1 < t < 0,
                1        t(t + 1) 2                t(t + 1) . . . (t + (n − 1)) n
Ln (x) = f0 + tf−1/2  +            f−1 + . . . +                                f−n/2 ,
                             2                                    n!
1-ÿ ôîðìóëà Ãàóññà ïî x0 , x1 ,x−1 ,x2 , x−2 . . . , xn/2 , x−n/2 , x = x0 + th,
0 < t ≤ 0.5,
                                                               n            n
                   t(t−1)                t(t2 −1) . . . (t2 −( −2)2 )(t−( −1))
              1
Ln (x)=f0 +tf1/2 +         f02 + . . . +                       2            2       f0n ,
                      2                                        n!
2-ÿ ôîðìóëà Ãàóññà ïî x0 , x−1 , x1 , x−2 , x2 , . . . , x−n/2 , xn/2 , x = x0 + th,
−1/2 < t < 0,
                                                                 n             n
                     t(t+1) 2              t(t2 −1) . . . (t2 −( −2)2 )(t + ( −1))
              1
Ln (x)=f0 +tf−1/2 +          f0 + . . . +                        2             2       f0n .
                        2                                         n!
Ôîðìóëà Ñòèðëèíãà
                         t2 2          t(t2 − 1)(t2 − 22 )...[t2 − (n − 1)2 ] 2n−1
L(x0 + th) = f0 + tµf01 +   f0 + ... +                                       µf0   +
                         2!                         (2n − 1)!
   2 2          2         2
  t (t − 1)...[t − (n − 1) ] 2n        1 2n−1       2n−1
+                            f0 ,       [f      + f−1/2  ] = µf02n−1 .
            (2n)!                      2 1/2
Ôîðìóëà Áåññåëÿ
                                   1 1      t(t − 1) 2
L2n+2 (x0 + th) = µf1/2 + (t − )f1/2     +          µf1/2 + ...+
                                   2           2!
     2        2    2     2           2
  t(t − 1)(t − 2 )...[t − (n − 1) ](t − n) 2n
+                                             µf1/2 +
                      (2n)!
                                         1
  t(t2 − 1)...[t2 − (n − 1)2 ](t − n)(t − )
+                                        2 f 2n+1 , 1 [f 2n + f 2n ] = µf 2n .
                   (2n + 1)!                 1/2      2 1       0        1/2


   Âûáðàâ ïîäõîäÿùèå èíòåðïîëÿöèîííûå ôîðìóëû, âûïîëíèòü èíòåðïî-
ëèðîâàíèå òàáëè÷íîé ôóíêöèè â òî÷êàõ x∗∗ , x∗∗∗ , x∗∗∗∗ , èñïîëüçóÿ ìàê-
ñèìàëüíî âîçìîæíîå êîëè÷åñòâî óçëîâ äëÿ êàæäîé ôîðìóëû. Âàðèàíòû
òî÷åê x∗∗ , x∗∗∗ , x∗∗∗∗ ñì. â òàáëèöå 1.
   3. Îöåíèòü ïîãðåøíîñòü èíòåðïîëèðîâàíèÿ â ýòèõ òî÷êàõ, àíàëîãè÷íî


                                             6