Анализ прохождения сигналов через линейные цепи. Парфенов В.И. - 28 стр.

UptoLike

Составители: 

28
ЗАДАЧИ
Выполнить задания , сформулированные в примере, для линейных цепей ,
приведенных в лабораторной работе 4, и для следующих значений
параметров этих цепей :
1.
ττττ
τττ
1
4
2
4
3
4
4
4
5
3
6
3
7
3
42210576107661090610
119103751052510
====⋅
===⋅
−−
.,.,.,.,
.,.,..
2.
τττττ
ττ
1
4
2
4
3
4
4
4
5
3
6
3
7
3
225104371061310746101410
4551076110
=====⋅
==⋅
−−
.,.,.,.,.,
.,..
3.
ττττ
τττ
1
4
2
4
3
4
4
4
5
3
6
3
7
3
4361066107251094410
178103911065510
====⋅
===⋅
−−
.,.,.,.,
.,.,..
4.
ττττ
τττε
1
4
2
4
3
4
4
3
5
3
6
3
7
3
41210625108391020210
35710431106311004
====⋅
===⋅=
−−−
.,.,.,.,
.,.,.,..
5.
ττττ
τττε
1
4
2
4
3
4
4
3
5
3
6
3
7
3
42310623108581014410
295104021052810015
====⋅
===⋅=
−−−
.,.,.,.,
.,.,.,..
6.
τττττ
ττε
1
3
2
3
3
3
4
3
5
3
6
3
7
3
124101691021710291051510
655107211045
=====⋅
==⋅=
−−
.,.,.,.,.,
.,.,.
7.
τττττ
ττε
1
4
2
4
3
4
4
4
5
4
6
4
7
4
115101591020310261053910
70310932103
=====⋅
==⋅=
−−
.,.,.,.,.,
.,.,.
8.
τττττ
ττε
1
3
2
3
3
3
4
3
5
3
6
3
7
3
1191015510192102231040810
583106210100
=====⋅
==⋅=
−−
.,.,.,.,.,
.,.,.
9.
ττττ
τττε
1
4
2
4
3
4
4
4
5
3
6
3
7
3
55710609107511092710
1811027110302510075
====⋅
===⋅=
−−
.,.,.,.,
.,.,.,..
10.
ττττ
τττε
1
4
2
4
3
4
4
3
5
3
6
3
7
3
63310777109151018610
30610527106351025
====⋅
===⋅=
−−
.,.,.,.,
.,.,.,.
                                                   28
                                              ЗА Д А Ч И

В ыполнить зад ания, сф орму лиров анные в примере, д ля линей ных цепей ,
прив ед енных в лаб ораторной раб оте № 4, и д ля след у ющ их значений
параметров этих цепей :


     τ1 = 4.22 ⋅ 10 −4 , τ 2 = 5.76 ⋅ 10 −4 , τ 3 = 7.66 ⋅ 10 −4 , τ 4 = 9.06 ⋅10 −4 ,
1.
           . ⋅ 10 −3 , τ 6 = 3.75 ⋅ 10 −3 , τ 7 = 5.25 ⋅10 −3 .
     τ5 = 119

     τ1 = 2.25 ⋅10 −4 , τ2 = 4.37 ⋅10 −4 , τ3 = 613
                                                 . ⋅10 −4 , τ 4 = 7.46 ⋅10 −4 , τ 5 = 14
                                                                                       . ⋅10 −3 ,
2.
     τ6 = 4.55 ⋅10 −3 , τ 7 = 7.61 ⋅10 −3 .

     τ1 = 4.36 ⋅ 10 −4 , τ 2 = 6.6 ⋅ 10−4 , τ3 = 7.25 ⋅ 10−4 , τ4 = 9.44 ⋅ 10 −4 ,
3.
     τ5 = 1.78 ⋅ 10 −3 , τ6 = 3.91 ⋅10 −3 , τ 7 = 6.55 ⋅ 10−3 .

        . ⋅10 −4 , τ2 = 6.25 ⋅10 −4 , τ 3 = 8.39 ⋅10 −4 , τ4 = 2.02 ⋅10 −3 ,
  τ = 412
4. 1
  τ5 = 3.57 ⋅10 −3 , τ 6 = 4.31 ⋅10 −3 , τ 7 = 6.31 ⋅10 −3 , ε = 0.4.

     τ1 = 4.23 ⋅10 −4 , τ 2 = 6.23 ⋅10 −4 , τ 3 = 8.58 ⋅10 −4 , τ4 = 1.44 ⋅10 −3 ,
5.
     τ5 = 2.95 ⋅10 −3 , τ 6 = 4.02 ⋅10 −3 , τ 7 = 5.28 ⋅10 −3 , ε = 015
                                                                     . .

           . ⋅ 10 −3 , τ 2 = 169
     τ1 = 124                 . ⋅10 −3 , τ3 = 217
                                               . ⋅ 10−3 , τ 4 = 2.9 ⋅ 10 −3 , τ5 = 515
                                                                                    . ⋅ 10 −3 ,
6.
     τ6 = 6.55 ⋅10 −3 , τ 7 = 7.21 ⋅ 10 −3 , ε = 45.

           . ⋅10 −4 , τ 2 = 159
     τ1 = 115                . ⋅ 10 −4 , τ 3 = 2.03 ⋅ 10 −4 , τ 4 = 2.6 ⋅ 10 −4 , τ5 = 5.39 ⋅10 −4 ,
7.
     τ6 = 7.03 ⋅ 10−4 , τ 7 = 9.32 ⋅10 −4 , ε = 3.

       . ⋅10 −3 , τ 2 = 155
  τ = 119                 . ⋅10 −3 , τ3 = 192 . ⋅10 −3 , τ 4 = 2.23 ⋅10 −3 , τ 5 = 4.08 ⋅10 −3 ,
8. 1
  τ6 = 5.83 ⋅10 −3 , τ 7 = 6.2 ⋅10 −3 , ε = 100.

     τ1 = 5.57 ⋅ 10−4 , τ2 = 6.09 ⋅ 10 −4 , τ3 = 7.51 ⋅ 10 −4 , τ 4 = 9.27 ⋅ 10 −4 ,
9.
           . ⋅10 −3 , τ6 = 2.71 ⋅ 10−3 , τ 7 = 3.025 ⋅ 10 −3 , ε = 0.75.
     τ5 = 181

      τ1 = 6.33 ⋅ 10−4 , τ2 = 7.77 ⋅10 −4 , τ 3 = 915
                                                   . ⋅ 10 −4 , τ4 = 186
                                                                     . ⋅ 10 −3 ,
10.
      τ5 = 3.06 ⋅10 −3 , τ 6 = 5.27 ⋅ 10 −3 , τ 7 = 6.35 ⋅ 10−3 , ε = 25.