ВУЗ:
Рубрика:
§6. ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž ÇÒÁÆÉËÁ 43
õÒÁ×ÎÅÎÉÅ ÎÁËÌÏÎÎÏÊ ÁÓÉÍÐÔÏÔÙ: y =
1
2
x − 1.
6. îÁÊÄ¾Í ÐÒÏÉÚ×ÏÄÎÕÀ: y
0
=
x
2
(x+3)
2(x+1)
3
. òÅÛÁÅÍ ÎÅÒÁ×ÅÎÓÔ×Á: y
0
> 0 É y
0
< 0.
éÍÅÅÍ: y
0
> 0 ÉÌÉ
x
2
(x+3)
2(x+1)
3
> 0, ÏÔËÕÄÁ x < −3, −1 < x < 0, x > 0; y
0
< 0,
ÏÔËÕÄÁ −3 < x < −1. îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −3), (−1; 0) É (0; +∞) ÆÕÎËÃÉÑ
ÍÏÎÏÔÏÎÎÏ ×ÏÚÒÁÓÔÁÅÔ, ÎÁ ÉÎÔÅÒ×ÁÌÅ (−3; −1) ¡ ÍÏÎÏÔÏÎÎÏ ÕÂÙ×ÁÅÔ.
ðÒÉÒÁ×ÎÉ×ÁÑ ÐÒÏÉÚ×ÏÄÎÕÀ ÎÕÌÀ, ÎÁÈÏÄÉÍ ËÒÉÔÉÞÅÓËÉÅ ÔÏÞËÉ ÐÅÒ×ÏÇÏ ÒÏ-
ÄÁ: x = 0, x = −3. éÚ ÓÈÅÍÙ (ÒÉÓ. Á)) ÓÌÅÄÕÅÔ, ÞÔÏ × ÔÏÞËÅ x = −3 ÆÕÎËÃÉÑ
ÉÍÅÅÔ ÍÁËÓÉÍÕÍ, Á × ÔÏÞËÅ x = 0 ÜËÓÔÒÅÍÕÍÁ ÎÅÔ. îÁÊÄ¾Í ÏÒÄÉÎÁÔÕ ÔÏÞËÉ
ÍÁËÓÉÍÕÍÁ: y
max
= −3
3
8
.
7. îÁÈÏÄÉÍ ×ÔÏÒÕÀ ÐÒÏÉÚ×ÏÄÎÕÀ: y
00
=
3x
(x+1)
4
. ÷ÔÏÒÁÑ ÐÒÏÉÚ×ÏÄÎÁÑ ÐÏÌÏ-
ÖÉÔÅÌØÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÅ (0; +∞) É ÏÔÒÉÃÁÔÅÌØÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1) É
(−1; 0). ëÒÉÔÉÞÅÓËÁÑ ÔÏÞËÁ ×ÔÏÒÏÇÏ ÒÏÄÁ ¡ x = 0. éÚ ÓÈÅÍÙ (ÒÉÓ. Â)) ÓÌÅ-
ÄÕÅÔ, ÞÔÏ × ÔÏÞËÅ x = 0 ÆÕÎËÃÉÑ ÉÍÅÅÔ ÐÅÒÅÇÉÂ. îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1)
É (−1; 0) ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ××ÅÒÈ, Á ÎÁ ÉÎÔÅÒ×ÁÌÅ (0; +∞) ¡ ×ÙÐÕËÌÁ ×ÎÉÚ.
ïÒÄÉÎÁÔÁ ÔÏÞËÉ ÐÅÒÅÇÉÂÁ y
ÐÅÒ
= 0.
8. çÒÁÆÉË ÆÕÎËÃÉÉ ÉÚÏÂÒÁ־ΠÎÁ ÒÉÓ. ×).
ðÒÉÍÅÒ 6. ðÒÏ×ÅÓÔÉ ÐÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ É ÐÏÓÔÒÏÉÔØ ÇÒÁÆÉË ÆÕÎËÃÉÉ
y = e
1
x−1
.
òÅÛÅÎÉÅ. 1. ïÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ¡ ×ÓÑ ÞÉÓÌÏ×ÁÑ ÏÓØ, ËÒÏÍÅ ÔÏÞËÉ
x = 1.
2. æÕÎËÃÉÑ ÎÅ Ñ×ÌÑÅÔÓÑ ÐÅÒÉÏÄÉÞÅÓËÏÊ.
3. æÕÎËÃÉÑ ÎÅ Ñ×ÌÑÅÔÓÑ ÎÉ Þ¾ÔÎÏÊ, ÎÉ ÎÅÞ¾ÔÎÏÊ.
4. æÕÎËÃÉÑ ÎÅ ÉÍÅÅÔ ÎÕÌÅÊ. ïÎÁ ÐÏÌÏÖÉÔÅÌØÎÁ ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÏÓÉ,
ËÒÏÍÅ ÔÏÞËÉ x = 1. æÕÎËÃÉÑ ÐÅÒÅÓÅËÁÅÔÓÑ Ó ÏÓØÀ Oy × ÔÏÞËÅ
0;
1
e
.
5. æÕÎËÃÉÑ ÉÍÅÅÔ ÒÁÚÒÙ× × ÔÏÞËÅ x = 1.
§6. ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž ÇÒÁÆÉËÁ 43 õÒÁ×ÎÅÎÉÅ ÎÁËÌÏÎÎÏÊ ÁÓÉÍÐÔÏÔÙ: y = 12 x − 1. 2 6. îÁÊÄ¾Í ÐÒÏÉÚ×ÏÄÎÕÀ: y 0 = x2(x+1) (x+3) 0 0 3 . òÅÛÁÅÍ ÎÅÒÁ×ÅÎÓÔ×Á: y > 0 É y < 0. 2 éÍÅÅÍ: y 0 > 0 ÉÌÉ x2(x+1) (x+3) 0 3 > 0, ÏÔËÕÄÁ x < −3, −1 < x < 0, x > 0; y < 0, ÏÔËÕÄÁ −3 < x < −1. îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −3), (−1; 0) É (0; +∞) ÆÕÎËÃÉÑ ÍÏÎÏÔÏÎÎÏ ×ÏÚÒÁÓÔÁÅÔ, ÎÁ ÉÎÔÅÒ×ÁÌÅ (−3; −1) ¡ ÍÏÎÏÔÏÎÎÏ ÕÂÙ×ÁÅÔ. ðÒÉÒÁ×ÎÉ×ÁÑ ÐÒÏÉÚ×ÏÄÎÕÀ ÎÕÌÀ, ÎÁÈÏÄÉÍ ËÒÉÔÉÞÅÓËÉÅ ÔÏÞËÉ ÐÅÒ×ÏÇÏ ÒÏ- ÄÁ: x = 0, x = −3. éÚ ÓÈÅÍÙ (ÒÉÓ. Á)) ÓÌÅÄÕÅÔ, ÞÔÏ × ÔÏÞËÅ x = −3 ÆÕÎËÃÉÑ ÉÍÅÅÔ ÍÁËÓÉÍÕÍ, Á × ÔÏÞËÅ x = 0 ÜËÓÔÒÅÍÕÍÁ ÎÅÔ. îÁÊÄ¾Í ÏÒÄÉÎÁÔÕ ÔÏÞËÉ ÍÁËÓÉÍÕÍÁ: ymax = −3 83 . 3x 7. îÁÈÏÄÉÍ ×ÔÏÒÕÀ ÐÒÏÉÚ×ÏÄÎÕÀ: y 00 = (x+1) 4 . ÷ÔÏÒÁÑ ÐÒÏÉÚ×ÏÄÎÁÑ ÐÏÌÏ- ÖÉÔÅÌØÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÅ (0; +∞) É ÏÔÒÉÃÁÔÅÌØÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1) É (−1; 0). ëÒÉÔÉÞÅÓËÁÑ ÔÏÞËÁ ×ÔÏÒÏÇÏ ÒÏÄÁ ¡ x = 0. éÚ ÓÈÅÍÙ (ÒÉÓ. Â)) ÓÌÅ- ÄÕÅÔ, ÞÔÏ × ÔÏÞËÅ x = 0 ÆÕÎËÃÉÑ ÉÍÅÅÔ ÐÅÒÅÇÉÂ. îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1) É (−1; 0) ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ××ÅÒÈ, Á ÎÁ ÉÎÔÅÒ×ÁÌÅ (0; +∞) ¡ ×ÙÐÕËÌÁ ×ÎÉÚ. ïÒÄÉÎÁÔÁ ÔÏÞËÉ ÐÅÒÅÇÉÂÁ yÐÅÒ = 0. 8. çÒÁÆÉË ÆÕÎËÃÉÉ ÉÚÏÂÒÁ־ΠÎÁ ÒÉÓ. ×). ðÒÉÍÅÒ 6. ðÒÏ×ÅÓÔÉ ÐÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ É ÐÏÓÔÒÏÉÔØ ÇÒÁÆÉË ÆÕÎËÃÉÉ 1 y = e x−1 . òÅÛÅÎÉÅ. 1. ïÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ¡ ×ÓÑ ÞÉÓÌÏ×ÁÑ ÏÓØ, ËÒÏÍÅ ÔÏÞËÉ x = 1. 2. æÕÎËÃÉÑ ÎÅ Ñ×ÌÑÅÔÓÑ ÐÅÒÉÏÄÉÞÅÓËÏÊ. 3. æÕÎËÃÉÑ ÎÅ Ñ×ÌÑÅÔÓÑ ÎÉ Þ¾ÔÎÏÊ, ÎÉ ÎÅÞ¾ÔÎÏÊ. 4. æÕÎËÃÉÑ ÎÅ ÉÍÅÅÔ ÎÕÌÅÊ. ïÎÁ ÐÏÌÏÖÉÔÅÌØÎÁ ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÏÓÉ, 1 ËÒÏÍÅ ÔÏÞËÉ x = 1. æÕÎËÃÉÑ ÐÅÒÅÓÅËÁÅÔÓÑ Ó ÏÓØÀ Oy × ÔÏÞËÅ 0; e . 5. æÕÎËÃÉÑ ÉÍÅÅÔ ÒÁÚÒÙ× × ÔÏÞËÅ x = 1.
Страницы
- « первая
- ‹ предыдущая
- …
- 41
- 42
- 43
- 44
- 45
- …
- следующая ›
- последняя »