Пределы. - 10 стр.

UptoLike

Рубрика: 

10 §2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ
úÁÍÅÞÁÎÉÅ. ÷ÎÉÍÁÎÉÅ! óÏÏÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÅÊ ÍÏÖÎÏ ÐÒÉÍÅ-
ÎÑÔØ ÔÏÌØËÏ × ÓÌÕÞÁÅ, ËÏÇÄÁ ÆÕÎËÃÉÑ, ËÏÔÏÒÕÀ ÚÁÍÅÎÑÀÔ ÎÁ ÜË×É×ÁÌÅÎÔÎÕÀ,
Ñ×ÌÑÅÔÓÑ ÍÎÏÖÉÔÅÌÅÍ ×ÓÅÇÏ ×ÙÒÁÖÅÎÉÑ. úÁÍÅÎÕ ÎÁ ÜË×É×ÁÌÅÎÔÎÕÀ ÆÕÎËÃÉÀ
× ÏÔÄÅÌØÎÏÍ ÓÌÁÇÁÅÍÏÍ ÁÌÇÅÂÒÁÉÞÅÓËÏÊ ÓÕÍÍÙ ÄÅÌÁÔØ ÎÅÌØÚÑ.
÷ ÓÌÕÞÁÅ, ËÏÇÄÁ lim
xa
t(x) = 0, ÓÐÒÁ×ÅÄÌÉ×Ù ÓÌÅÄÕÀÝÉÅ ÓÏÏÔÎÏÛÅÎÉÑ, ÓÌÅ-
ÄÕÀÝÉÅ ÉÚ ÏÐÒÅÄÅÌÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÙÈ ÆÕÎËÃÉÊ É ÔÅÏÒÅÍÙ Ï ÐÒÅÄÅÌÅ ËÏÍ-
ÐÏÚÉÃÉÉ ÆÕÎËÃÉÊ.
üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x a
lim
xa
t(x) = 0
sin t(x) t(x)
1 cos t(x)
t
2
(x)
2
tg t(x) t(x)
arcsin t(x) t(x)
arctg t(x) t(x)
e
t(x)
1 t(x)
a
t(x)
1 t(x) ln a
ln(1 + t(x)) t(x)
log
a
(1 + t(x))
t(x)
ln a
(1 + t(x))
m
1 m · t(x)
ðÒÉÍÅÒ 11. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→−3
arcsin(x+3)
x
2
+3x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
0
. æÕÎËÃÉÑ
arcsin(x + 3) = arcsin t(x), ÇÄÅ t(x) = x + 3 É lim
x→−3
t(x) = 0,
ÐÏÜÔÏÍÕ ÓÐÒÁ×ÅÄÌÉ×Ï ÓÏÏÔÎÏÛÅÎÉÅ arcsin(x + 3) x + 3 ÐÒÉ x 3. éÔÁË,
lim
x→−3
arcsin(x + 3)
x
2
+ 3x
= lim
x→−3
x + 3
x
2
+ 3x
= lim
x→−3
x + 3
x(x + 3)
=
1
3
.
ðÒÉÍÅÒ 12. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x0
1cos 10x
1cos 15x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
0
. òÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ
1 cos 10x = 1 cos t(x), ÇÄÅ t(x) = 10x É lim
x0
10x = 0,
ÐÏÜÔÏÍÕ 1cos 10x
(10x)
2
2
. áÎÁÌÏÇÉÞÎÏ, 1cos 15x
(15x)
2
2
, ÏÔÓÀÄÁ ÐÏÌÕÞÉÍ
lim
x0
1 cos 10x
1 cos 15x
= lim
x0
(10x)
2
(15x)
2
=
4
9
.
ðÒÉÍÅÒ 13. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x3
4
x
64
x3
.
10                      §2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ

   úÁÍÅÞÁÎÉÅ. ÷ÎÉÍÁÎÉÅ! óÏÏÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÅÊ ÍÏÖÎÏ ÐÒÉÍÅ-
ÎÑÔØ ÔÏÌØËÏ × ÓÌÕÞÁÅ, ËÏÇÄÁ ÆÕÎËÃÉÑ, ËÏÔÏÒÕÀ ÚÁÍÅÎÑÀÔ ÎÁ ÜË×É×ÁÌÅÎÔÎÕÀ,
Ñ×ÌÑÅÔÓÑ ÍÎÏÖÉÔÅÌÅÍ ×ÓÅÇÏ ×ÙÒÁÖÅÎÉÑ. úÁÍÅÎÕ ÎÁ ÜË×É×ÁÌÅÎÔÎÕÀ ÆÕÎËÃÉÀ
× ÏÔÄÅÌØÎÏÍ ÓÌÁÇÁÅÍÏÍ ÁÌÇÅÂÒÁÉÞÅÓËÏÊ ÓÕÍÍÙ ÄÅÌÁÔØ ÎÅÌØÚÑ.
   ÷ ÓÌÕÞÁÅ, ËÏÇÄÁ lim t(x) = 0, ÓÐÒÁ×ÅÄÌÉ×Ù ÓÌÅÄÕÀÝÉÅ ÓÏÏÔÎÏÛÅÎÉÑ, ÓÌÅ-
                   x→a
ÄÕÀÝÉÅ ÉÚ ÏÐÒÅÄÅÌÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÙÈ ÆÕÎËÃÉÊ É ÔÅÏÒÅÍÙ Ï ÐÒÅÄÅÌÅ ËÏÍ-
ÐÏÚÉÃÉÉ ÆÕÎËÃÉÊ.
                        üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x → a
                                 lim t(x) = 0
                                      x→a
                                   sin t(x) ∼ t(x)
                                                 2
                                1 − cos t(x) ∼ t (x)
                                                   2
                                   tg t(x) ∼ t(x)
                                 arcsin t(x) ∼ t(x)
                                 arctg t(x) ∼ t(x)
                                  et(x) − 1 ∼ t(x)
                                at(x) − 1 ∼ t(x) ln a
                                ln(1 + t(x)) ∼ t(x)
                               loga (1 + t(x)) ∼ t(x)
                                                   ln a
                            (1 + t(x))m − 1 ∼ m · t(x)
                                                   arcsin(x+3)
     ðÒÉÍÅÒ 11. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim                  x2 +3x
                                                               .
                                            x→−3
                                                   ×ÉÄÁ 00 . æÕÎËÃÉÑ
                                                           
     òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ
          arcsin(x + 3) = arcsin t(x), ÇÄÅ t(x) = x + 3 É lim t(x) = 0,
                                                               x→−3

ÐÏÜÔÏÍÕ ÓÐÒÁ×ÅÄÌÉ×Ï ÓÏÏÔÎÏÛÅÎÉÅ arcsin(x + 3) ∼ x + 3 ÐÒÉ x → −3. éÔÁË,
                arcsin(x + 3)        x+3          x+3       1
            lim     2
                              = lim 2      = lim          =− .
           x→−3    x + 3x      x→−3 x + 3x  x→−3 x(x + 3)   3
                                     1−cos 10x
     ðÒÉÍÅÒ 12. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 1−cos 15x
                                               .
                                 x→0         0
     òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ 0 . òÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ
            1 − cos 10x = 1 − cos t(x), ÇÄÅ t(x) = 10x É lim 10x = 0,
                                                              x→0
                       (10x)2                                 (15x)2
ÐÏÜÔÏÍÕ 1−cos 10x ∼       2
                              .   áÎÁÌÏÇÉÞÎÏ, 1−cos 15x ∼        2
                                                                     ,   ÏÔÓÀÄÁ ÐÏÌÕÞÉÍ
                           1 − cos 10x       (10x)2 4
                       lim             = lim        = .
                       x→0 1 − cos 15x   x→0 (15x)2  9
                                                   x
     ðÒÉÍÅÒ 13. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 4x−3
                                       −64
                                           .
                                            x→3