ВУЗ:
Рубрика:
§3. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ ÓÔÅÐÅÎÎÏ-ÐÏËÁÚÁÔÅÌØÎÏÊ ÆÕÎËÃÉÉ 15
òÅÛÅÎÉÅ. ðÒÅÄÓÔÁ×ÉÍ
sin
2
x
−
1
x
2
× ×ÉÄÅ:
sin
2
x
−
1
x
2
= e
−
1
x
2
ln sin
2
x
.
ôÁË ËÁË lim
x→0
sin
2
x = 0 É lim
x→0
−
1
x
2
= −∞, ÔÏ
lim
x→0
−
1
x
2
ln sin
2
x
= +∞, lim
x→0
sin
2
x
−
1
x
2
= +∞.
ðÕÓÔØ × ÐÒÏÉÚ×ÅÄÅÎÉÉ v(x) ln u(x) ÐÒÅÄÅÌ ÏÄÎÏÇÏ ÉÚ ÓÏÍÎÏÖÉÔÅÌÅÊ ÐÒÉ
x → a ÒÁ×ÅÎ ÎÕÌÀ, Á ×ÔÏÒÏÊ ÓÏÍÎÏÖÉÔÅÌØ Ñ×ÌÑÅÔÓÑ ÂÅÓËÏÎÅÞÎÏ ÂÏÌØÛÏÊ
ÆÕÎËÃÉÅÊ ÐÒÉ x → a. ôÁËÏÅ ×ÏÚÍÏÖÎÏ × ÔÒ¾È ÓÌÕÞÁÑÈ:
1) lim
x→a
v(x) = 0, lim
x→a
u(x) = +∞ (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ
∞
0
);
2) lim
x→a
v(x) = 0, lim
x→a
u(x) = 0 (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ
0
0
);
3) lim
x→a
v(x) = ∞, lim
x→a
u(x) = 1 (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ [1
∞
]).
÷ ÜÔÉÈ ÓÌÕÞÁÑÈ ÄÌÑ ×ÙÞÉÓÌÅÎÉÑ ÐÒÅÄÅÌÏ× ÐÒÉÍÅÎÑÀÔ ÐÒɾÍÙ, ËÏÔÏÒÙÅ
ÂÙÌÉ ÐÏËÁÚÁÎÙ ÐÒÉ ×ÙÞÉÓÌÅÎÉÉ ÐÒÅÄÅÌÏ× × ÓÌÕÞÁÑÈ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ.
ðÒÉÍÅÒ 4. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→0+
(1 + sin x)
1
2x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ [1
∞
]. ðÒÅÄÓÔÁ×ÉÍ × ×ÉÄÅ:
(1 + sin x)
1
2x
= e
1
2x
ln(1+sin x)
.
÷ÙÞÉÓÌÉÍ
lim
x→0+
ln(1 + sin x)
2x
= lim
x→0+
sin x
2x
= lim
x→0+
x
2x
=
1
2
.
ðÏÌÕÞÉÍ
lim
x→0+
(1 + sin x)
1
2x
= e
1
2
.
÷ ÄÁÌØÎÅÊÛÅÍ ÎÁÍ ÐÏÎÁÄÏÂÑÔÓÑ ÓÌÅÄÕÀÝÉÅ ÓÏÏÔÎÏÛÅÎÉÑ:
lim
x→+∞
x
p
a
x
= 0 (a > 1, p > 0),
lim
x→+∞
ln
q
x
x
p
= 0 (p > 0, q > 0),
lim
x→0+
x
p
ln
q
x = 0 (p > 0, q > 0).
ðÒÉÍÅÒ 5. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→0+
x
x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
0
. ðÒÅÄÓÔÁ×ÉÍ x
x
= e
x ln x
.
ôÁË ËÁË lim
x→0+
x ln x = 0, ÔÏ lim
x→0+
x
x
= e
0
= 1.
ðÒÉÍÅÒ 6. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→+∞
5x
2
x−4
1
x
.
§3. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ ÓÔÅÐÅÎÎÏ-ÐÏËÁÚÁÔÅÌØÎÏÊ ÆÕÎËÃÉÉ 15 − 1 òÅÛÅÎÉÅ. ðÒÅÄÓÔÁ×ÉÍ sin2 x x2 × ×ÉÄÅ: − 1 1 2 sin2 x x2 = e− x2 ln sin x . ôÁË ËÁË lim sin2 x = 0 É lim − x12 = −∞, ÔÏ x→0 x→0 1 − 1 lim − 2 ln sin x = +∞, lim sin2 x x2 = +∞. 2 x→0 x x→0 ðÕÓÔØ × ÐÒÏÉÚ×ÅÄÅÎÉÉ v(x) ln u(x) ÐÒÅÄÅÌ ÏÄÎÏÇÏ ÉÚ ÓÏÍÎÏÖÉÔÅÌÅÊ ÐÒÉ x → a ÒÁ×ÅÎ ÎÕÌÀ, Á ×ÔÏÒÏÊ ÓÏÍÎÏÖÉÔÅÌØ Ñ×ÌÑÅÔÓÑ ÂÅÓËÏÎÅÞÎÏ ÂÏÌØÛÏÊ ÆÕÎËÃÉÅÊ ÐÒÉ x → a. ôÁËÏÅ ×ÏÚÍÏÖÎÏ × ÔÒ¾È ÓÌÕÞÁÑÈ: 1) lim v(x) = 0, lim u(x) = +∞ (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ ∞0 ); x→a x→a 2) lim v(x) = 0, lim u(x) = 0 (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ 00 ); x→a x→a 3) lim v(x) = ∞, lim u(x) = 1 (ÓÉÍ×ÏÌÉÞÅÓËÉ ÏÂÏÚÎÁÞÁÅÔÓÑ [1∞ ]). x→a x→a ÷ ÜÔÉÈ ÓÌÕÞÁÑÈ ÄÌÑ ×ÙÞÉÓÌÅÎÉÑ ÐÒÅÄÅÌÏ× ÐÒÉÍÅÎÑÀÔ ÐÒɾÍÙ, ËÏÔÏÒÙÅ ÂÙÌÉ ÐÏËÁÚÁÎÙ ÐÒÉ ×ÙÞÉÓÌÅÎÉÉ ÐÒÅÄÅÌÏ× × ÓÌÕÞÁÑÈ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ. 1 ðÒÉÍÅÒ 4. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim (1 + sin x) 2x . x→0+ òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ [1∞ ]. ðÒÅÄÓÔÁ×ÉÍ × ×ÉÄÅ: 1 1 (1 + sin x) 2x = e 2x ln(1+sin x) . ÷ÙÞÉÓÌÉÍ ln(1 + sin x) sin x x 1 lim = lim = lim = . x→0+ 2x x→0+ 2x x→0+ 2x 2 ðÏÌÕÞÉÍ 1 1 lim (1 + sin x) 2x = e 2 . x→0+ ÷ ÄÁÌØÎÅÊÛÅÍ ÎÁÍ ÐÏÎÁÄÏÂÑÔÓÑ ÓÌÅÄÕÀÝÉÅ ÓÏÏÔÎÏÛÅÎÉÑ: xp lim = 0 (a > 1, p > 0), x→+∞ ax lnq x lim = 0 (p > 0, q > 0), x→+∞ xp lim xp lnq x = 0 (p > 0, q > 0). x→0+ ðÒÉÍÅÒ 5. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim xx . x→0+ òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ 00 . ðÒÅÄÓÔÁ×ÉÍ xx = ex ln x . ôÁË ËÁË lim x ln x = 0, ÔÏ lim xx = e0 = 1. x→0+ x→0+ 2 x1 5x ðÒÉÍÅÒ 6. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim x−4 . x→+∞
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »