ВУЗ:
Рубрика:
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 7
üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x → 0
sin x ∼ x
1 − cos x ∼
x
2
2
tg x ∼ x
arcsin x ∼ x
arctg x ∼ x
e
x
− 1 ∼ x
a
x
− 1 ∼ x ln a
ln(1 + x) ∼ x
log
a
(1 + x) ∼
x
ln a
(1 + x)
m
− 1 ∼ mx
ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ
lim
x→+∞
a
n
x
n
+ a
n−1
x
n−1
+ . . . + a
1
x + a
0
b
m
x
m
+ b
m−1
x
m−1
+ . . . + b
1
x + b
0
(m > 1, n > 1, a
n
b
m
6= 0).
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
∞
∞
. òÁÚÄÅÌÉÍ ÞÉÓÌÉÔÅÌØ É
ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÉ ÎÁ x
m
.
lim
x→+∞
a
n
x
n
+ a
n−1
x
n−1
+ . . . + a
1
x + a
0
b
m
x
m
+ b
m−1
x
m−1
+ . . . + b
1
x + b
0
=
= lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
b
m
+
b
m−1
x
+ . . . +
b
1
x
m−1
+
b
0
x
m
=
=
lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
lim
x→+∞
b
m
+
b
m−1
x
+ . . . +
b
1
x
m−1
+
b
0
x
m
=
=
1
b
m
lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
.
ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ, ÞÔÏ
lim
x→+∞
a
n
x
n
+ . . . + a
0
b
m
x
m
+ . . . + b
0
=
0 ÐÒÉ m > n,
a
n
b
m
ÐÒÉ m > n,
∞ ÐÒÉ m > n.
ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→+∞
5x
3
+2x
2
−4
6x
2
+8x+9
.
òÅÛÅÎÉÅ. óÏÇÌÁÓÎÏ ÐÒÉÍÅÒÕ 1 m = 2, n = 3, ÏÔÓÀÄÁ m < n, ÐÏÜÔÏÍÕ
lim
x→+∞
5x
3
+ 2x
2
− 4
6x
2
+ 8x + 9
= ∞.
ðÒÉÍÅÒ 3. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→+∞
7x
3
−3x+2
8x
4
−6x
3
+5x+1
.
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 7 üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x → 0 sin x ∼ x 2 1 − cos x ∼ x2 tg x ∼ x arcsin x ∼ x arctg x ∼ x ex − 1 ∼ x ax − 1 ∼ x ln a ln(1 + x) ∼ x loga (1 + x) ∼ lnxa (1 + x)m − 1 ∼ mx ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ an xn + an−1xn−1 + . . . + a1 x + a0 lim (m > 1, n > 1, anbm 6= 0). x→+∞ bm xm + bm−1 xm−1 + . . . + b1 x + b0 ∞ òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ ∞ . òÁÚÄÅÌÉÍ ÞÉÓÌÉÔÅÌØ É m ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÉ ÎÁ x . an xn + an−1 xn−1 + . . . + a1 x + a0 lim = x→+∞ bm xm + bm−1 xm−1 + . . . + b1 x + b0 a1 a0 an xn−m + an−1xn−1−m + . . . + xm−1 + xm = lim = x→+∞ bm + bm−1 b1 b0 x + . . . + xm−1 + xm a1 an xn−m + an−1xn−1−m + . . . + xm−1 + xam0 lim x→+∞ = = bm−1 b1 b0 lim bm + x + . . . + xm−1 + xm x→+∞ 1 n−m n−1−m a1 a0 = lim an x + an−1x + . . . + m−1 + m . bm x→+∞ x x ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ, ÞÔÏ an x n + . . . + a 0 0 ÐÒÉ m > n, an lim m = b ÐÒÉ m > n, x→+∞ bm x + . . . + b0 m ∞ ÐÒÉ m > n. 5x3 +2x2 −4 ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 2 . x→+∞ 6x +8x+9 òÅÛÅÎÉÅ. óÏÇÌÁÓÎÏ ÐÒÉÍÅÒÕ 1 m = 2, n = 3, ÏÔÓÀÄÁ m < n, ÐÏÜÔÏÍÕ 5x3 + 2x2 − 4 lim = ∞. x→+∞ 6x2 + 8x + 9 7x3 −3x+2 ðÒÉÍÅÒ 3. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 8x4 −6x3 +5x+1 . x→+∞
Страницы
- « первая
- ‹ предыдущая
- …
- 5
- 6
- 7
- 8
- 9
- …
- следующая ›
- последняя »