ВУЗ:
Рубрика:
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 7
üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x → 0
sin x ∼ x
1 − cos x ∼
x
2
2
tg x ∼ x
arcsin x ∼ x
arctg x ∼ x
e
x
− 1 ∼ x
a
x
− 1 ∼ x ln a
ln(1 + x) ∼ x
log
a
(1 + x) ∼
x
ln a
(1 + x)
m
− 1 ∼ mx
ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ
lim
x→+∞
a
n
x
n
+ a
n−1
x
n−1
+ . . . + a
1
x + a
0
b
m
x
m
+ b
m−1
x
m−1
+ . . . + b
1
x + b
0
(m > 1, n > 1, a
n
b
m
6= 0).
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
∞
∞
. òÁÚÄÅÌÉÍ ÞÉÓÌÉÔÅÌØ É
ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÉ ÎÁ x
m
.
lim
x→+∞
a
n
x
n
+ a
n−1
x
n−1
+ . . . + a
1
x + a
0
b
m
x
m
+ b
m−1
x
m−1
+ . . . + b
1
x + b
0
=
= lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
b
m
+
b
m−1
x
+ . . . +
b
1
x
m−1
+
b
0
x
m
=
=
lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
lim
x→+∞
b
m
+
b
m−1
x
+ . . . +
b
1
x
m−1
+
b
0
x
m
=
=
1
b
m
lim
x→+∞
a
n
x
n−m
+ a
n−1
x
n−1−m
+ . . . +
a
1
x
m−1
+
a
0
x
m
.
ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ, ÞÔÏ
lim
x→+∞
a
n
x
n
+ . . . + a
0
b
m
x
m
+ . . . + b
0
=
0 ÐÒÉ m > n,
a
n
b
m
ÐÒÉ m > n,
∞ ÐÒÉ m > n.
ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→+∞
5x
3
+2x
2
−4
6x
2
+8x+9
.
òÅÛÅÎÉÅ. óÏÇÌÁÓÎÏ ÐÒÉÍÅÒÕ 1 m = 2, n = 3, ÏÔÓÀÄÁ m < n, ÐÏÜÔÏÍÕ
lim
x→+∞
5x
3
+ 2x
2
− 4
6x
2
+ 8x + 9
= ∞.
ðÒÉÍÅÒ 3. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim
x→+∞
7x
3
−3x+2
8x
4
−6x
3
+5x+1
.
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 7
üË×É×ÁÌÅÎÔÎÏÓÔÉ ÐÒÉ x → 0
sin x ∼ x
2
1 − cos x ∼ x2
tg x ∼ x
arcsin x ∼ x
arctg x ∼ x
ex − 1 ∼ x
ax − 1 ∼ x ln a
ln(1 + x) ∼ x
loga (1 + x) ∼ lnxa
(1 + x)m − 1 ∼ mx
ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ
an xn + an−1xn−1 + . . . + a1 x + a0
lim (m > 1, n > 1, anbm 6= 0).
x→+∞ bm xm + bm−1 xm−1 + . . . + b1 x + b0
∞
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ ∞ . òÁÚÄÅÌÉÍ ÞÉÓÌÉÔÅÌØ É
m
ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÉ ÎÁ x .
an xn + an−1 xn−1 + . . . + a1 x + a0
lim =
x→+∞ bm xm + bm−1 xm−1 + . . . + b1 x + b0
a1 a0
an xn−m + an−1xn−1−m + . . . + xm−1 + xm
= lim =
x→+∞ bm + bm−1 b1 b0
x + . . . + xm−1 + xm
a1
an xn−m + an−1xn−1−m + . . . + xm−1 + xam0
lim
x→+∞
= =
bm−1 b1 b0
lim bm + x + . . . + xm−1 + xm
x→+∞
1
n−m n−1−m a1 a0
= lim an x + an−1x + . . . + m−1 + m .
bm x→+∞ x x
ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ, ÞÔÏ
an x n + . . . + a 0 0 ÐÒÉ m > n,
an
lim m
= b ÐÒÉ m > n,
x→+∞ bm x + . . . + b0 m
∞ ÐÒÉ m > n.
5x3 +2x2 −4
ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 2 .
x→+∞ 6x +8x+9
òÅÛÅÎÉÅ. óÏÇÌÁÓÎÏ ÐÒÉÍÅÒÕ 1 m = 2, n = 3, ÏÔÓÀÄÁ m < n, ÐÏÜÔÏÍÕ
5x3 + 2x2 − 4
lim = ∞.
x→+∞ 6x2 + 8x + 9
7x3 −3x+2
ðÒÉÍÅÒ 3. ÷ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ lim 8x4 −6x3 +5x+1
.
x→+∞
Страницы
- « первая
- ‹ предыдущая
- …
- 5
- 6
- 7
- 8
- 9
- …
- следующая ›
- последняя »
