ВУЗ:
Рубрика:
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 5
åÓÌÉ lim
x→a
f(x) = 0, f(x) 6= 0, ÔÏ lim
x→a
1
f(x)
= ∞, É ÏÂÒÁÔÎÏ, ÅÓÌÉ lim
x→a
f(x) =
= ∞, ÔÏ lim
x→a
1
f(x)
= 0.
åÓÌÉ lim
x→a
f
1
(x) = ∞ É lim
x→a
f
2
(x) = A, ÔÏ lim
x→a
(f
1
(x) + f
2
(x)) = ∞.
åÓÌÉ lim
x→a
f
1
(x) = +∞ É lim
x→a
f
2
(x) = +∞, ÔÏ lim
x→a
(f
1
(x) + f
2
(x)) = +∞.
åÓÌÉ lim
x→a
f
1
(x) = ∞ É lim
x→a
f
2
(x) = A 6= 0, ÔÏ lim
x→a
(f
1
(x) · f
2
(x)) = ∞.
åÓÌÉ lim
x→a
f
1
(x) = A 6= 0, f
2
(x) 6= 0 É lim
x→a
f
2
(x) = 0, ÔÏ lim
x→a
f
1
(x)
f
2
(x)
= ∞.
åÓÌÉ lim
x→a
f
1
(x) = A É lim
x→a
f
2
(x) = ∞, ÔÏ lim
x→a
f
1
(x)
f
2
(x)
= 0.
ðÒÉÍÅÒ 7. îÁÊÔÉ lim
x→0
ln(x
3
+4x+2)
ln(x
10
+x
3
+x
2
)
.
òÅÛÅÎÉÅ. ðÏÌØÚÕÑÓØ ÕÔ×ÅÒÖÄÅÎÉÅÍ Ï ÐÒÅÄÅÌÅ ÐÒÏÉÚ×ÅÄÅÎÉÑ, ÐÏÌÕÞÁÅÍ:
lim
x→0
ln(x
3
+ 4x + 2)
ln(x
10
+ x
3
+ x
2
)
= lim
x→0
ln(x
3
+ 4x + 2) ·
1
lim
x→0
ln(x
10
+ x
3
+ x
2
)
= ln 2 ·0 = 0.
ðÒÉÍÅÒ 8. îÁÊÔÉ lim
x→−∞
x
2
x
.
òÅÛÅÎÉÅ. òÁÓÓÍÏÔÒÉÍ ÏÂÒÁÔÎÕÀ ×ÅÌÉÞÉÎÕ
2
x
x
= 2
x
·
1
x
. ðÒÉÍÅÎÑÅÍ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ Ï ÐÒÅÄÅÌÅ ÐÒÏÉÚ×ÅÄÅÎÉÑ É ÐÏÌÕÞÁÅÍ:
lim
x→−∞
x
2
x
= lim
x→−∞
2
x
·
1
x
= lim
x→−∞
2
x
· lim
x→−∞
1
x
= 0,
ÏÔËÕÄÁ ÓÌÅÄÕÅÔ, ÞÔÏ lim
x→−∞
x
2
x
= −∞.
ðÒÉÍÅÒ 9. îÁÊÔÉ lim
x→+∞
√
4x
2
+ 4x + x
.
òÅÛÅÎÉÅ. ôÒÅÂÕÅÔÓÑ ×ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ ÓÕÍÍÙ Ä×ÕÈ ÂÅÓËÏÎÅÞÎÏ ÂÏÌØ-
ÛÉÈ ÐÒÉ x → +∞ ÆÕÎËÃÉÊ, ÐÏÜÔÏÍÕ
lim
x→+∞
p
4x
2
+ 4x + x
= +∞.
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ
ðÒÉ ×ÙÞÉÓÌÅÎÉÉ ÐÒÅÄÅÌÏ×
lim
x→a
f(x)
g(x)
, lim
x→a
(f(x) · g(x)) , lim
x→a
(f(x) − g(x))
ÍÏÇÕÔ ×ÏÚÎÉËÎÕÔØ ÓÉÔÕÁÃÉÉ, ËÏÇÄÁ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏÅ ÐÒÉÍÅÎÅÎÉÅ ÔÅÏÒÅÍ Ï
Ó×ÏÊÓÔ×ÁÈ ÐÒÅÄÅÌÏ× É ÂÅÓËÏÎÅÞÎÏ ÂÏÌØÛÉÈ ÆÕÎËÃÉÊ ÎÅ ÄÁ¾Ô ×ÏÚÍÏÖÎÏÓÔØ ÉÈ
×ÙÞÉÓÌÉÔØ. ôÁËÏÅ ÐÏÌÏÖÅÎÉÅ ×ÏÚÍÏÖÎÏ × ÓÌÅÄÕÀÝÉÈ ÓÌÕÞÁÑÈ.
1. lim
x→a
f(x)
g(x)
:
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ 5
1
åÓÌÉ lim f (x) = 0, f (x) 6= 0, ÔÏ lim = ∞, É ÏÂÒÁÔÎÏ, ÅÓÌÉ lim f (x) =
x→a x→a f (x) x→a
= ∞, ÔÏ lim 1 = 0.
x→a f (x)
åÓÌÉ lim f1(x) = ∞ É lim f2 (x) = A, ÔÏ lim (f1(x) + f2(x)) = ∞.
x→a x→a x→a
åÓÌÉ lim f1(x) = +∞ É lim f2 (x) = +∞, ÔÏ lim (f1(x) + f2(x)) = +∞.
x→a x→a x→a
åÓÌÉ lim f1(x) = ∞ É lim f2 (x) = A 6= 0, ÔÏ lim (f1(x) · f2(x)) = ∞.
x→a x→a x→a
åÓÌÉ lim f1(x) = A 6= 0, f2(x) 6= 0 É lim f2(x) = 0, ÔÏ lim ff21(x)
(x)
= ∞.
x→a x→a x→a
åÓÌÉ lim f1(x) = A É lim f2 (x) = ∞, ÔÏ lim ff12 (x) = 0.
x→a x→a x→a (x)
ln(x3 +4x+2)
ðÒÉÍÅÒ 7. îÁÊÔÉ lim ln(x 10 +x3 +x2 ) .
x→0
òÅÛÅÎÉÅ. ðÏÌØÚÕÑÓØ ÕÔ×ÅÒÖÄÅÎÉÅÍ Ï ÐÒÅÄÅÌÅ ÐÒÏÉÚ×ÅÄÅÎÉÑ, ÐÏÌÕÞÁÅÍ:
ln(x3 + 4x + 2) 3 1
lim = lim ln(x + 4x + 2) · = ln 2 · 0 = 0.
x→0 ln(x10 + x3 + x2 ) x→0 lim ln(x10 + x3 + x2 )
x→0
x
ðÒÉÍÅÒ 8. îÁÊÔÉ lim 2 x.
x→−∞
x
òÅÛÅÎÉÅ. òÁÓÓÍÏÔÒÉÍ ÏÂÒÁÔÎÕÀ ×ÅÌÉÞÉÎÕ 2x = 2x · x1 . ðÒÉÍÅÎÑÅÍ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ Ï ÐÒÅÄÅÌÅ ÐÒÏÉÚ×ÅÄÅÎÉÑ É ÐÏÌÕÞÁÅÍ:
x x 1 1
lim x = lim 2 · = lim 2x · lim = 0,
x→−∞ 2 x→−∞ x x→−∞ x→−∞ x
x
ÏÔËÕÄÁ ÓÌÅÄÕÅÔ, ÞÔÏ lim x = −∞.
x→−∞ 2 √
ðÒÉÍÅÒ 9. îÁÊÔÉ lim 4x2 + 4x + x .
x→+∞
òÅÛÅÎÉÅ. ôÒÅÂÕÅÔÓÑ ×ÙÞÉÓÌÉÔØ ÐÒÅÄÅÌ ÓÕÍÍÙ Ä×ÕÈ ÂÅÓËÏÎÅÞÎÏ ÂÏÌØ-
ÛÉÈ ÐÒÉ x → +∞ ÆÕÎËÃÉÊ, ÐÏÜÔÏÍÕ
p
lim 2
4x + 4x + x = +∞.
x→+∞
§2. ÷ÙÞÉÓÌÅÎÉÅ ÐÒÅÄÅÌÁ × ÓÌÕÞÁÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ
ðÒÉ ×ÙÞÉÓÌÅÎÉÉ ÐÒÅÄÅÌÏ×
f (x)
lim , lim (f (x) · g(x)) , lim (f (x) − g(x))
x→a g(x) x→a x→a
ÍÏÇÕÔ ×ÏÚÎÉËÎÕÔØ ÓÉÔÕÁÃÉÉ, ËÏÇÄÁ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏÅ ÐÒÉÍÅÎÅÎÉÅ ÔÅÏÒÅÍ Ï
Ó×ÏÊÓÔ×ÁÈ ÐÒÅÄÅÌÏ× É ÂÅÓËÏÎÅÞÎÏ ÂÏÌØÛÉÈ ÆÕÎËÃÉÊ ÎÅ ÄÁ¾Ô ×ÏÚÍÏÖÎÏÓÔØ ÉÈ
×ÙÞÉÓÌÉÔØ. ôÁËÏÅ ÐÏÌÏÖÅÎÉÅ ×ÏÚÍÏÖÎÏ × ÓÌÅÄÕÀÝÉÈ ÓÌÕÞÁÑÈ.
1. lim fg(x)
(x)
:
x→a
Страницы
- « первая
- ‹ предыдущая
- …
- 3
- 4
- 5
- 6
- 7
- …
- следующая ›
- последняя »
